DOI QR코드

DOI QR Code

Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green alga (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea

  • Kim, Hocheol (School of Life Science, Kyungpook National University) ;
  • Jo, Bok Yeon (School of Life Science, Kyungpook National University) ;
  • Kim, Han Soon (School of Life Science, Kyungpook National University)
  • Received : 2017.07.09
  • Accepted : 2017.10.23
  • Published : 2017.12.15

Abstract

Microcystis aeruginosa causes harmful algal blooms in the Nakdong River of Korea. We studied the effect of different concentrations and ratios of ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), and phosphate ($PO{_4}^{3-}$) on growth of this species in BG-11 medium: each nutrient alone, $NO_3{^-}:NH_4{^+}$ ratio, the N : P ratio with fixed total N (TN), and the N : P ratio with fixed total P (TP). The single nutrient experiments indicated that M. aeruginosa had the highest growth rate at $NH_4{^+}$ and $NO_3{^-}$ concentrations of $500{\mu}M$, and at a $PO{_4}^{3-}$ concentration of $5{\mu}M$. The $NO_3{^-}:NH_4{^+}$ ratio experiments showed that M. aeruginosa had the highest growth rate at a ratio of 1 : 1 when TN was $100{\mu}M$ and $250{\mu}M$, and the lowest growth rate at a ratio of 1 : 1 when the TN was $500{\mu}M$. The N : P ratio with fixed TN experiments indicated that M. aeruginosa had the highest growth rates at 50 : 1, 20 : 1, and 100 : 1 ratios when the TN was 100, 250, and $500{\mu}M$, respectively. In contrast, the N : P ratio with fixed TP experiments showed that M. aeruginosa had the highest growth rates at 200 : 1 ratio at all tested TP concentrations. In conclusion, our results imply that the $NO_3{^-}:NH_4{^+}$ ratio and the $PO{_4}^{3-}$ concentration affect the early stage of growth of M. aeruginosa. In particular, our results suggest that the maximum growth of M. aeruginosa is not simply affected by the $NO_3{^-}:NH_4{^+}$ ratio and the N : P ratio, but is determined by the TN concentration if a certain minimum $PO{_4}^{3-}$ concentration is present.

Keywords

References

  1. Ahn, C. -Y., Lee, C. S., Choi, J. W., Lee, S. & Oh, H. -M. 2015. Global occurrence of harmful cyanobacterial blooms and N, P-limitation strategy for bloom control. Korean J. Environ. Biol. 33:1-6. https://doi.org/10.11626/KJEB.2015.33.1.001
  2. Baldia, S. F., Evangelista, A. D., Aralar, E. V. & Santiago, A. E. 2007. Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines. J. Appl. Phycol. 19:607-613. https://doi.org/10.1007/s10811-007-9209-0
  3. Brookes, J. D. & Ganf, G. G. 2001. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J. Plankton Res. 23:1399-1411. https://doi.org/10.1093/plankt/23.12.1399
  4. Chen, W., Zhang, Q. & Dai, S. 2009. Effects of nitrate on intracellular nitrate and growth of Microcystis aeruginosa. J. Appl. Phycol. 21:701-706. https://doi.org/10.1007/s10811-009-9405-1
  5. Chisholm, S. W. 1992. Phytoplankton size. In Falkowski, P. G. & Woodhead, A. D. (Eds.) Primary Productivity and Biogeochemical Cycles in the Sea. Springer, New York, pp. 213-237.
  6. Choi, K. S. & Kim, B. C. 2000. A study on the kinetic parameters of alkaline phosphatase by algae. Korean J. Limnol. 33:380-386.
  7. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014-1015. https://doi.org/10.1126/science.1167755
  8. Dai, G. -Z., Shang, J. -L. & Qiu, B. -S. 2012. Ammonia may play an important role in the succession of cyanobacterial bloom and the distribution of common algal species in shallow freshwater lakes. Glob. Chang. Biol. 18:1571-1581. https://doi.org/10.1111/j.1365-2486.2012.02638.x
  9. Dolman, A. M., Rucker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U. & Wiedner, C. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7:e38757. https://doi.org/10.1371/journal.pone.0038757
  10. Dortch, Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61:183-201. https://doi.org/10.3354/meps061183
  11. Dugdale, R. C., Wilkerson, F. P., Hogue, V. E. & Marchi, A. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar. Coast. Shelf Sci. 73:17-29. https://doi.org/10.1016/j.ecss.2006.12.008
  12. Flores, E., Frías, J. E., Rubio, L. M. & Herrero, A. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117-133. https://doi.org/10.1007/s11120-004-5830-9
  13. Flynn, K. J., Fasham, M. J. R. & Hipkin, C. R. 1997. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352:1625-1645. https://doi.org/10.1098/rstb.1997.0145
  14. Guillard, R. R. L. 1973. Methods for microflagellates and nanoplankton. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 66-85.
  15. Hammed, A. M., Prajapati, S. K., Simsek, S. & Simsek, H. 2016. Growth regime and environmental remediation of microalgae. Algae 31:189-204. https://doi.org/10.4490/algae.2016.31.8.28
  16. Jacobson, L. & Halmann, M. 1982. Polyphosphate metabolism in the blue-green alga, Microcystis aeruginosa. J. Plankton Res. 4:481-488. https://doi.org/10.1093/plankt/4.3.481
  17. Jung, H. -Y. & Cho, K. -J. 2003a. Environmental conditions of sediment and bottom waters near sediment in the downstream of the Nagdong River. Korean J. Limnol. 36:311-321.
  18. Jung, H. -Y & Cho, K. -J. 2003b. SOD and inorganic nutrient fluxes from sediment in the downstream of the Nagdong River. Korean J. Limnol. 36:322-335.
  19. Kim, E. H. & Kang, S. K. 1993. The effect of heavy metal ions on the growth of Microcystis aeruginosa. J. Korean Soc. Water Qual. 9:193-200.
  20. Kim, H. -S. & Hwang, S. -J. 2004. Effects of nutrients and N/P ratio stoichiometry on phytoplankton growth in an eutrophic reservoir. Korean J. Limnol. 37:36-46.
  21. Kim, J. -E., Park, J. -W., Jo, K. -A. & Kim, S. -K. 2013. Variances of environmental factors during water bloom by Microcystis aeruginosa (Kutzing) Kutzing in Ilwol Reservoir, Suwon. Korean J. Ecol. Environ. 46:265-275.
  22. Lee, C. S., Ahn, C. -Y., La, H. -J., Lee, S. & Oh, H. -M. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J. Environ. Biol. 31:233-242. https://doi.org/10.11626/KJEB.2013.31.4.233
  23. Lee, O. H. & Cho, K. J. 2006. Nitrogen and phosphorus uptake and growth kinetics of Microcystis aeruginosa cultured under chemostats. Korean J. Limnol. 39:119-130.
  24. Lee, T. -G., Park, S. -W., Yu, T. -S. & Kim, J. 1998. The growth and coagulation characteristics of Microcystis aeruginosa during water treatment processes. J. Korea Technol. Soc. Water Waste Water Treat. 6:33-42.
  25. Levasseur, M., Thompson, P. A. & Harrison, P. J. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595. https://doi.org/10.1111/j.0022-3646.1993.00587.x
  26. Lin, S., Litaker, R. W. & Sunda, W. G. 2016. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52:10-36. https://doi.org/10.1111/jpy.12365
  27. Liu, X., Lu, X. & Chen, Y. 2011. The effects of temperature and nutrient ratios on Microcystis bloom in Lake Taihu, China: an 11-year investigation. Harmful Algae 10:337-343. https://doi.org/10.1016/j.hal.2010.12.002
  28. Nalewajko, C. & Murphy, T. P. 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2:45-48. https://doi.org/10.1007/s102010170015
  29. National Institute of Environmental Research (NIER). 2013. Research on implementing the harmful algal bloom alert system for weir in the Nakdong River watershed. NIER, Incheon, 33 pp.
  30. Paerl, H. W., Gardner, W. S., McCarthy, M. J., Peierls, B. L. & Wilhelm, S. W. 2014. Algal blooms: noteworthy nitrogen. Science 346:175.
  31. Park, H. -K., Cheon, S. U. & Ryu, J. K. 1993. Growth characteristics of bloom-forming blue-green algae. Korean J. Phycol. 8:47-54.
  32. Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A. & Leedale, G. F. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. Emend. Elenkin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 293:419-476. https://doi.org/10.1098/rstb.1981.0081
  33. Rückert, G. V. & Giani, A. 2004. Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Rev. Bras. Bot. 27:325-331.
  34. Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R. & van Nes, E. H. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272-282. https://doi.org/10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
  35. Schindler, D. W. 2012. The dilemma of controlling cultural eutrophication of lakes. Proc. Biol. Sci. 279:4322-4333. https://doi.org/10.1098/rspb.2012.1032
  36. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M. & Kasian, S. E. M. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. U. S. A. 105:11254-11258. https://doi.org/10.1073/pnas.0805108105
  37. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (Order Chroococcales). Bacteriol. Rev. 35:171-205.
  38. Takamura, N., Iwakuma, T. & Yasuno, M. 1987. Uptake of $^{13}C$ and $^{15}N$ (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. J. Plankton Res. 9:151-165. https://doi.org/10.1093/plankt/9.1.151
  39. Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J. & Sivonen, K. 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb. Ecol. 43:443-454. https://doi.org/10.1007/s00248-001-0041-9
  40. Water Information System, National Institute of Environmental Research, Korea. 2016. Available from: http://water.nier.go.kr. Accessed Oct 30, 2017.
  41. Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. 2003. The low TN:TP ratio, a cause or a result of Microcystis bloom? Water Res. 37:2073-2080. https://doi.org/10.1016/S0043-1354(02)00532-8
  42. Yu, J. J., Lee, H. J., Lee, K. -L., Lee, I. J., Jung, G. Y. & Chen, S. U. 2014. Effects of environmental factors on algal communities in the Nakdong River. J. Korean Soc. Water Environ. 30:539-548. https://doi.org/10.15681/KSWE.2014.30.5.539
  43. Yu, J. J., Lee, K. L., Lee, H. J., Hwang, J. W., Lyu, H. S., Shin, L. Y., Park, A. R. & Chen, S. U. 2015. Relations of nutrient concentrations on the seasonality of algal community in the Nakdong River, Korea. J. Korean Soc. Water Environ. 31:110-119. https://doi.org/10.15681/KSWE.2015.31.2.110

Cited by

  1. Nitrate determines growth and protease inhibitor content of the cyanobacterium Microcystis aeruginosa pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1674-0
  2. Qualitative Assessment and Typology of the Water Resource Used for the Production of Drinking Water in Duékoué, Western Côte d’Ivoire vol.7, pp.5, 2017, https://doi.org/10.4236/gep.2019.75017
  3. 추계-동계 낙동강 중 하류 보 구간 일차생산력 및 식물플랑크톤 군집조성 변화: 식물플랑크톤 색소와 CHEMTAX 활용 vol.52, pp.2, 2017, https://doi.org/10.11614/ksl.2019.52.2.081
  4. Occurrence of potentially toxic cyanobacteria Microcystis aeruginosa in aquatic ecosystems of central Kerala (south India) vol.56, pp.None, 2017, https://doi.org/10.1051/limn/2020015
  5. Optimization of nutrients from wastewater using RSMfor augmentation of Chlorella pyrenoidosa with enhanced lipid productivity, FAME content, and its quality assessment using fuel quality index vol.10, pp.2, 2020, https://doi.org/10.1007/s13399-019-00443-z
  6. Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms vol.61, pp.None, 2017, https://doi.org/10.1016/j.ecoinf.2020.101202
  7. Spatiotemporal variations in the composition of algal mats in wastewater treatment ponds of tannery industry vol.193, pp.6, 2017, https://doi.org/10.1007/s10661-021-09144-5
  8. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings vol.273, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2020.128605
  9. Influence of Abiotic Factors on the Growth of Cyanobacteria Isolated from Nakdong River, South Korea1 vol.57, pp.3, 2021, https://doi.org/10.1111/jpy.13143
  10. Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production vol.13, pp.16, 2017, https://doi.org/10.3390/su13169081
  11. Growth characteristics of lytic cyanophages newly isolated from the Nakdong River, Korea vol.306, pp.None, 2021, https://doi.org/10.1016/j.virusres.2021.198600