References
- ASCE. (2010), ASCE/SEI 7-10, Minimum design loads for buildings and other structures, Reston, VA.
- ASCE. (2013), ASCE/SEI 41-13, Seismic Evaluation and Retrofit of Existing Buildings, Reston, VA.
- Cassiano D., D'Aniello M. and Rebelo C. (2017), "Parametric finite element analyses on flush end-plate joints under column removal", J. Constr. Steel Res., 137, 77-92. https://doi.org/10.1016/j.jcsr.2017.06.012
- Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and Silva, L. S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Gerasimidis, S., Deodatis, G., Kontoroupi, T. and Ettouney, M. (2015), "Loss-of-stability induced progressive collapse modes in 3D steel moment frames", Struct. Infrastruct. Eng., 11, 334-344. https://doi.org/10.1080/15732479.2014.885063
- GSA. (2003), General Services Administration, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, Washington, DC.
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
- Larijani, R.J., Nasserabadi, D.H. and Aghayan, I. (2017), "Progressive collapse analysis of buildings with concentric and eccentric braced frames", Struct. Eng. Mech., 61(6), 755-763. https://doi.org/10.12989/sem.2017.61.6.755
- Liu (Max), M. and Pirmoz, A. (2016), "Energy-based pulldown analysis for assessing the progressive collapsepotential of steel frame buildings", Eng. Struct., 123, 372-378. https://doi.org/10.1016/j.engstruct.2016.05.020
- Liu C., Tan K.H. and Fung T.C. (2013), "Dynamic behaviour of web cleat connections subjected to sudden column removal scenario", J. Constr. Steel Res., 86, 92-106. https://doi.org/10.1016/j.jcsr.2013.03.020
- Liu M. (2015), "Pulldown analysis for progressive collapse assessment", J. Perform. Constr. Fac., 29, 04014027. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000459
- Liu, M. (2013), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011
- Málaga-Chuquitaype, C., Elghazouli, A.Y. and Enache, R. (2016), "Contribution of secondary frames to the mitigation of collapse in steel buildings subjected to extreme loads", Struct. Infrastruct. Eng., 12, 45-60. https://doi.org/10.1080/15732479.2014.994534
- Mashhadi, J. and Saffari, H. (2016), "Effects of damping ratio on dynamic increase factor in progressive collapse", Steel Compos. Struct., 22, 677-690. https://doi.org/10.12989/scs.2016.22.3.677
- Mashhadi, J. and Saffari, H. (2017), "Modification of dynamic increase factor to assess progressive collapse potential of structures", J. Constr. Steel Res., 138, 72-78. https://doi.org/10.1016/j.jcsr.2017.06.038
- McKay, A., Marchand, K. and Diaz, M. (2012), "Alternate path method in progressive collapse analysis: variation of dynamic and nonlinear load increase factors", Pract. Period. Struct. Des. Constr., ASCE , 17(4), 152-160. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000126
- Mirtaheri, M. and Zoghi, M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357
- Mohajeri, N.F., Usefi, N. and Rashidian, O. (2016), "A new method for progressive collapse analysis of RC frames", Struct. Eng. Mech., 60(1), 31-50. https://doi.org/10.12989/sem.2016.60.1.031
- Ruth, P., Marchand, K.A. and Williamson, E.B. (2006), "Static equivalency in progressive collapse alternate path analysis: reducing conservatism while retaining structural integrity", J. Perform. Constr. Fac., 20(4), 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
- SAP2000 Nonlinear, Version 14.2, (2010), Structural Analysis Program, Computers and Structures Inc., Berkeley, CA.
- Stevens, D.J., Crowder, B., Hall, B. and Marchand, K. (2008), "Unified progressive collapse design requirements for DoD and GSA", Proceedings of the Structures Congress, Vancouver, Canada, April.
- Szyniszewski, S. and Krauthammer, T. (2012), "Energy flow in progressive collapse of steel framed buildings", Eng. Struct., 42, 142-153. https://doi.org/10.1016/j.engstruct.2012.04.014
- Tian, L.M., Wei, J.P., Hao, J.P. and Wang, X.T. (2017), "Dynamic analysis method for the progressive collapse of long-span spatial grid structures", Steel Compos. Struct., 23(4), 435-444 https://doi.org/10.12989/scs.2017.23.4.435
- UFC 4-023-03 (2013), United States Department of Defense, United facilities criteria design of buildings to resist progressive collapse, Washington (DC).
- Xu, G. and Ellingwood, B. R. (2011), "An energy-based partial pushdown analysis procedure for assessment of disproportionate collapse potential", J. Constr. Steel Res., 67, 547-555. https://doi.org/10.1016/j.jcsr.2010.09.001
Cited by
- Simplified robustness assessment of steel framed structures under fire-induced column failure vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.199