참고문헌
- Agamirov, V. (1990), "Dynamic problems of nonlinear shells theory", Science Edition, Moscow.
- Akbari, M., Kiani, Y., Aghdam, M. and Eslami, M. (2014), "Free vibration of FGM Levy conical panels", Compos. Struct., 116, 732-746. https://doi.org/10.1016/j.compstruct.2014.05.052
- Ambartsumian, S.A. (1964), Theory of anisotropic plates: strength, stability, vibration, Technomic Publishing Company, Stamford, USA.
- Ansari, R. and Darvizeh, M. (2008), "Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions", Compos. Struct., 85(4), 284-292. https://doi.org/10.1016/j.compstruct.2007.10.037
- Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Composites Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
- Argento, A. (1993), "Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading", J. Compos. Mater., 27(18), 1722-1738. https://doi.org/10.1177/002199839302701802
- Bert, C.W. and Birman, V. (1988), "Parametric instability of thick, orthotropic, circular cylindrical shells", Acta Mech., 71(1-4), 61-76. https://doi.org/10.1007/BF01173938
- Bespalova, E. and Urusova, G. (2011), "Identifying the domains of dynamic instability for inhomogeneous shell systems under periodic loads", Int. Appl. Mech., 47(2), 186-194. https://doi.org/10.1007/s10778-011-0452-3
- Bhagat, V.S., Pitchaimani, J. and Murigendrappa, S. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359
- Bich, D.H., Ninh, D.G., Kien, B.H. and Hui, D. (2016), "Nonlinear dynamical analyses of eccentrically stiffened functionally graded toroidal shell segments surrounded by elastic foundation in thermal environment", Composites Part B: Eng., 95, 355-373. https://doi.org/10.1016/j.compositesb.2016.04.004
- Bolotin, V. (1964), Dynamic stability of elastic systems, Holden-Day, San Francisco.
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017a), "Dynamic characteristics of functionally graded material sandwich plates in thermal environments", Mech. Adv. Mater. Struct., 24(2), 157-167. https://doi.org/10.1080/15376494.2015.1124949
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017b), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct, 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
- Deniz, A., Zerin, Z. and Karaca, Z. (2016), "Winkler-Pasternak foundation effect on the frequency parameter of FGM truncated conical shells in the framework of shear deformation theory", Composites Part B: Eng., 104, 57-70. https://doi.org/10.1016/j.compositesb.2016.08.006
- Dey, T. and Ramachandra, L. (2014), "Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading", Int. J. Nonlinear Mech., 64, 46-56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014
- Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076
- Ganapathi, M., Patel, B., Sambandam, C. and Touratier, M. (1999), "Dynamic instability analysis of circular conical shells", Compos. Struct., 46 (1), 59-64. https://doi.org/10.1016/S0263-8223(99)00045-8
- Han, Q. and Chu, F. (2014), "Parametric resonance of truncated conical shells rotating at periodically varying angular speed", J. Sound Vib., 333(13), 2866-2884. https://doi.org/10.1016/j.jsv.2014.02.020
- Heydarpour, Y., Malekzadeh, P. and Aghdam, M. (2014), "Free vibration of functionally graded truncated conical shells under internal pressure", Meccanica, 49(2), 267-282. https://doi.org/10.1007/s11012-013-9791-y
- Jansen, E.L. (2005), "Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis", Nonlinear Dynam., 39 (4), 349-367. https://doi.org/10.1007/s11071-005-4343-1
- Javed, S., Viswanathan, K. and Aziz, Z. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
- Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001
- Kornecki, A. (1966), "Dynamic stability of truncated conical shells under pulsating pressure(Parametric vibrations determining dynamic stability of simply supported truncated conical shells under pulsating pressure)", Israel J. Technol., 4, 110-120.
- Kumar, R., Dutta, S. and Panda, S. (2016), "Linear and non-linear dynamic instability of functionally graded plate subjected to nonuniform loading", Compos. Struct., 154, 219-230. https://doi.org/10.1016/j.compstruct.2016.07.050
- Kuntsevich, S. and Mikhasev, G. (2002), "Local parametric vibrations of a noncircular conical shell subjected to nonuniform pulsating pressure", Mech. Solids, 37(3), 134-139.
- Lam, K. and Hua, L. (1999), "Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell", J. Sound Vib., 223(2), 171-195. https://doi.org/10.1006/jsvi.1998.1432
- Lei, Z., Zhang, L., Liew, K. and Yu, J. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Mallon, N., Fey, R. and Nijmeijer, H. (2010), "Dynamic stability of a base-excited thin orthotropic cylindrical shell with top mass: simulations and experiments", J. Sound Vib., 329(15), 3149-3170. https://doi.org/10.1016/j.jsv.2010.02.007
- Massalas, C., Dalamangas, A. and Tzivanidis, G. (1981), "Dynamic instability of truncated conical shells, with variable modulus of elasticity, under periodic compressive forces", J. Sound Vib., 79(4), 519-528. https://doi.org/10.1016/0022-460X(81)90463-6
- Mehri, M., Asadi, H. and Wang, Q. (2016), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009
- Najafov, A., Sofiyev, A., Hui, D., Karaca, Z., Kalpakci, V. and Ozcelik, M. (2014), "Stability of EG cylindrical shells with shear stresses on a Pasternak foundation", Steel Compos. Struct., 17, 453-470. https://doi.org/10.12989/scs.2014.17.4.453
- Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C. (2013), "Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Eur. J. Mech. - A - Solids, 37, 24-34. https://doi.org/10.1016/j.euromechsol.2012.05.005
- Ng, T., Hua, L., Lam, K. and Loy, C. (1999), "Parametric instability of conical shells by the generalized differential quadrature method", Int. J. Numer. Meth. Eng., 44(6), 819-837. https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6<819::AID-NME528>3.0.CO;2-0
- Ng, T., Lam, K. and Reddy, J. (1998), "Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads", J. Sound Vib., 214(3), 513-529. https://doi.org/10.1006/jsvi.1998.1550
- Ng, T., Lam, K., Liew, K. and Reddy, J. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solids Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1
- Ovesy, H. and Fazilati, J. (2012), "Parametric instability analysis of moderately thick FGM cylindrical panels using FSM", Comput. Struct., 108, 135-143.
- Panda, H., Sahu, S. and Parhi, P. (2015), "Hygrothermal response on parametric instability of delaminated bidirectional composite flat panels", Eur. J. Mech. - A - Solids, 53, 268-281. https://doi.org/10.1016/j.euromechsol.2015.05.004
- Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
- Pradyumna, S. and Bandyopadhyay, J. (2009), "Dynamic instability of functionally graded shells using higher-order theory", J. Eng. Mech., 136(5), 551-561.
- Qinkai, H. and Fulei, C. (2013), "Parametric instability of a rotating truncated conical shell subjected to periodic axial loads", Mech. Res. Commun., 53, 63-74. https://doi.org/10.1016/j.mechrescom.2013.08.005
- Rahmanian, M., Firouz-Abadi, R. and Cigeroglu, E. (2017), "Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions", Int. J. Mech.Sci., 120, 42-61. https://doi.org/10.1016/j.ijmecsci.2016.10.037
- Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press.
- Sofiyev, A. (2014), "The combined influences of heterogeneity and elastic foundations on the nonlinear vibration of orthotropic truncated conical shells", Composites Part B: Eng., 61, 324-339. https://doi.org/10.1016/j.compositesb.2014.01.047
- Sofiyev, A. (2015), "Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells", Composites Part B: Eng., 77, 349-362. https://doi.org/10.1016/j.compositesb.2015.03.040
- Sofiyev, A. (2016), "Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory", Composites Part B: Eng., 89, 282-294. https://doi.org/10.1016/j.compositesb.2015.11.017
- Sofiyev, A. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
- Sofiyev, A. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060
- Su, Z., Jin, G. and Ye, T. (2014), "Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints", Compos. Struct., 118, 432-447. https://doi.org/10.1016/j.compstruct.2014.07.049
- Tani, J. (1974), "Dynamic instability of truncated conical shells under periodic axial load", Int. J. Solids Struct., 10(2), 169-176. https://doi.org/10.1016/0020-7683(74)90016-X
- Tani, J. (1976), "Influence of deformations prior to instability on the dynamic instability of conical shells under periodic axial load", J. Appl. Mech., 43(1), 87-91. https://doi.org/10.1115/1.3423801
- Timarci, T. and Soldatos, K. (1995), "Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory", J. Sound Vib., 187(4), 609- 624. https://doi.org/10.1006/jsvi.1995.0548
- Torki, M.E., Kazemi, M.T., Reddy, J.N., Haddadpoud, H. and Mahmoudkhani, S. (2014), "Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces", J. Sound Vib., 333(3), 801-817. https://doi.org/10.1016/j.jsv.2013.09.005
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016), "The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach", Compos. Struct., 154, 190-218. https://doi.org/10.1016/j.compstruct.2016.07.041
- Vescovini, R. and Dozio, L. (2016), "A variable-kinematic model for variable stiffness plates: Vibration and buckling analysis", Compos. Struct., 142, 15-26. https://doi.org/10.1016/j.compstruct.2016.01.068
- Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2014), "Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery", Compos. Struct., 112, 44-65. https://doi.org/10.1016/j.compstruct.2014.01.039
- Wosu, S., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Composites Part B: Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045
- Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoust., 85, 130-142. https://doi.org/10.1016/j.apacoust.2014.04.006
- Yang, J. and Shen, H.S. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5
피인용 문헌
- Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1545588
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction vol.49, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1689140
- Free vibration analysis of composite conical shells using Walsh series method vol.8, pp.7, 2021, https://doi.org/10.1088/2053-1591/ac0eb7