DOI QR코드

DOI QR Code

The dynamic instability of FG orthotropic conical shells within the SDT

  • Sofiyev, Abdullah H. (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University) ;
  • Zerin, Zihni (Department of Civil Engineering, Faculty of Engineering, Ondokuz Mayis University) ;
  • Allahverdiev, Bilender P. (Department of Mathematics, Faculty of Arts and Sciences, Suleyman Demirel University) ;
  • Hui, David (Department of Mechanical Engineering, University of New Orleans) ;
  • Turan, Ferruh (Department of Civil Engineering, Faculty of Engineering, Ondokuz Mayis University) ;
  • Erdem, Hakan (Department of Mechanical Engineering, University of New Orleans)
  • 투고 : 2017.04.12
  • 심사 : 2017.08.05
  • 발행 : 2017.12.10

초록

The dynamic instability of truncated conical shells subjected to dynamic axial load within first order shear deformation theory (FSDT) is examined. The conical shell is made from functionally graded (FG) orthotropic material. In the formulation of problem a dynamic version of Donnell's shell theory is used. The equations are converted to a Mathieu-Hill type differential equation employing Galerkin's method. The boundaries of main instability zones are found applying the method proposed by Bolotin. To verify these results, the results of other studies in the literature were compared. The influences of material gradient, orthotropy, as well as changing the geometric dimensions on the borders of the main areas of the instability are investigated.

키워드

참고문헌

  1. Agamirov, V. (1990), "Dynamic problems of nonlinear shells theory", Science Edition, Moscow.
  2. Akbari, M., Kiani, Y., Aghdam, M. and Eslami, M. (2014), "Free vibration of FGM Levy conical panels", Compos. Struct., 116, 732-746. https://doi.org/10.1016/j.compstruct.2014.05.052
  3. Ambartsumian, S.A. (1964), Theory of anisotropic plates: strength, stability, vibration, Technomic Publishing Company, Stamford, USA.
  4. Ansari, R. and Darvizeh, M. (2008), "Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions", Compos. Struct., 85(4), 284-292. https://doi.org/10.1016/j.compstruct.2007.10.037
  5. Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Composites Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
  6. Argento, A. (1993), "Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading", J. Compos. Mater., 27(18), 1722-1738. https://doi.org/10.1177/002199839302701802
  7. Bert, C.W. and Birman, V. (1988), "Parametric instability of thick, orthotropic, circular cylindrical shells", Acta Mech., 71(1-4), 61-76. https://doi.org/10.1007/BF01173938
  8. Bespalova, E. and Urusova, G. (2011), "Identifying the domains of dynamic instability for inhomogeneous shell systems under periodic loads", Int. Appl. Mech., 47(2), 186-194. https://doi.org/10.1007/s10778-011-0452-3
  9. Bhagat, V.S., Pitchaimani, J. and Murigendrappa, S. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359
  10. Bich, D.H., Ninh, D.G., Kien, B.H. and Hui, D. (2016), "Nonlinear dynamical analyses of eccentrically stiffened functionally graded toroidal shell segments surrounded by elastic foundation in thermal environment", Composites Part B: Eng., 95, 355-373. https://doi.org/10.1016/j.compositesb.2016.04.004
  11. Bolotin, V. (1964), Dynamic stability of elastic systems, Holden-Day, San Francisco.
  12. Chen, C.S., Liu, F.H. and Chen, W.R. (2017a), "Dynamic characteristics of functionally graded material sandwich plates in thermal environments", Mech. Adv. Mater. Struct., 24(2), 157-167. https://doi.org/10.1080/15376494.2015.1124949
  13. Chen, C.S., Liu, F.H. and Chen, W.R. (2017b), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct, 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
  14. Deniz, A., Zerin, Z. and Karaca, Z. (2016), "Winkler-Pasternak foundation effect on the frequency parameter of FGM truncated conical shells in the framework of shear deformation theory", Composites Part B: Eng., 104, 57-70. https://doi.org/10.1016/j.compositesb.2016.08.006
  15. Dey, T. and Ramachandra, L. (2014), "Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading", Int. J. Nonlinear Mech., 64, 46-56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014
  16. Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076
  17. Ganapathi, M., Patel, B., Sambandam, C. and Touratier, M. (1999), "Dynamic instability analysis of circular conical shells", Compos. Struct., 46 (1), 59-64. https://doi.org/10.1016/S0263-8223(99)00045-8
  18. Han, Q. and Chu, F. (2014), "Parametric resonance of truncated conical shells rotating at periodically varying angular speed", J. Sound Vib., 333(13), 2866-2884. https://doi.org/10.1016/j.jsv.2014.02.020
  19. Heydarpour, Y., Malekzadeh, P. and Aghdam, M. (2014), "Free vibration of functionally graded truncated conical shells under internal pressure", Meccanica, 49(2), 267-282. https://doi.org/10.1007/s11012-013-9791-y
  20. Jansen, E.L. (2005), "Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis", Nonlinear Dynam., 39 (4), 349-367. https://doi.org/10.1007/s11071-005-4343-1
  21. Javed, S., Viswanathan, K. and Aziz, Z. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
  22. Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
  23. Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
  24. Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001
  25. Kornecki, A. (1966), "Dynamic stability of truncated conical shells under pulsating pressure(Parametric vibrations determining dynamic stability of simply supported truncated conical shells under pulsating pressure)", Israel J. Technol., 4, 110-120.
  26. Kumar, R., Dutta, S. and Panda, S. (2016), "Linear and non-linear dynamic instability of functionally graded plate subjected to nonuniform loading", Compos. Struct., 154, 219-230. https://doi.org/10.1016/j.compstruct.2016.07.050
  27. Kuntsevich, S. and Mikhasev, G. (2002), "Local parametric vibrations of a noncircular conical shell subjected to nonuniform pulsating pressure", Mech. Solids, 37(3), 134-139.
  28. Lam, K. and Hua, L. (1999), "Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell", J. Sound Vib., 223(2), 171-195. https://doi.org/10.1006/jsvi.1998.1432
  29. Lei, Z., Zhang, L., Liew, K. and Yu, J. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  30. Mallon, N., Fey, R. and Nijmeijer, H. (2010), "Dynamic stability of a base-excited thin orthotropic cylindrical shell with top mass: simulations and experiments", J. Sound Vib., 329(15), 3149-3170. https://doi.org/10.1016/j.jsv.2010.02.007
  31. Massalas, C., Dalamangas, A. and Tzivanidis, G. (1981), "Dynamic instability of truncated conical shells, with variable modulus of elasticity, under periodic compressive forces", J. Sound Vib., 79(4), 519-528. https://doi.org/10.1016/0022-460X(81)90463-6
  32. Mehri, M., Asadi, H. and Wang, Q. (2016), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009
  33. Najafov, A., Sofiyev, A., Hui, D., Karaca, Z., Kalpakci, V. and Ozcelik, M. (2014), "Stability of EG cylindrical shells with shear stresses on a Pasternak foundation", Steel Compos. Struct., 17, 453-470. https://doi.org/10.12989/scs.2014.17.4.453
  34. Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C. (2013), "Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Eur. J. Mech. - A - Solids, 37, 24-34. https://doi.org/10.1016/j.euromechsol.2012.05.005
  35. Ng, T., Hua, L., Lam, K. and Loy, C. (1999), "Parametric instability of conical shells by the generalized differential quadrature method", Int. J. Numer. Meth. Eng., 44(6), 819-837. https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6<819::AID-NME528>3.0.CO;2-0
  36. Ng, T., Lam, K. and Reddy, J. (1998), "Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads", J. Sound Vib., 214(3), 513-529. https://doi.org/10.1006/jsvi.1998.1550
  37. Ng, T., Lam, K., Liew, K. and Reddy, J. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solids Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1
  38. Ovesy, H. and Fazilati, J. (2012), "Parametric instability analysis of moderately thick FGM cylindrical panels using FSM", Comput. Struct., 108, 135-143.
  39. Panda, H., Sahu, S. and Parhi, P. (2015), "Hygrothermal response on parametric instability of delaminated bidirectional composite flat panels", Eur. J. Mech. - A - Solids, 53, 268-281. https://doi.org/10.1016/j.euromechsol.2015.05.004
  40. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
  41. Pradyumna, S. and Bandyopadhyay, J. (2009), "Dynamic instability of functionally graded shells using higher-order theory", J. Eng. Mech., 136(5), 551-561.
  42. Qinkai, H. and Fulei, C. (2013), "Parametric instability of a rotating truncated conical shell subjected to periodic axial loads", Mech. Res. Commun., 53, 63-74. https://doi.org/10.1016/j.mechrescom.2013.08.005
  43. Rahmanian, M., Firouz-Abadi, R. and Cigeroglu, E. (2017), "Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions", Int. J. Mech.Sci., 120, 42-61. https://doi.org/10.1016/j.ijmecsci.2016.10.037
  44. Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press.
  45. Sofiyev, A. (2014), "The combined influences of heterogeneity and elastic foundations on the nonlinear vibration of orthotropic truncated conical shells", Composites Part B: Eng., 61, 324-339. https://doi.org/10.1016/j.compositesb.2014.01.047
  46. Sofiyev, A. (2015), "Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells", Composites Part B: Eng., 77, 349-362. https://doi.org/10.1016/j.compositesb.2015.03.040
  47. Sofiyev, A. (2016), "Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory", Composites Part B: Eng., 89, 282-294. https://doi.org/10.1016/j.compositesb.2015.11.017
  48. Sofiyev, A. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  49. Sofiyev, A. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060
  50. Su, Z., Jin, G. and Ye, T. (2014), "Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints", Compos. Struct., 118, 432-447. https://doi.org/10.1016/j.compstruct.2014.07.049
  51. Tani, J. (1974), "Dynamic instability of truncated conical shells under periodic axial load", Int. J. Solids Struct., 10(2), 169-176. https://doi.org/10.1016/0020-7683(74)90016-X
  52. Tani, J. (1976), "Influence of deformations prior to instability on the dynamic instability of conical shells under periodic axial load", J. Appl. Mech., 43(1), 87-91. https://doi.org/10.1115/1.3423801
  53. Timarci, T. and Soldatos, K. (1995), "Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory", J. Sound Vib., 187(4), 609- 624. https://doi.org/10.1006/jsvi.1995.0548
  54. Torki, M.E., Kazemi, M.T., Reddy, J.N., Haddadpoud, H. and Mahmoudkhani, S. (2014), "Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces", J. Sound Vib., 333(3), 801-817. https://doi.org/10.1016/j.jsv.2013.09.005
  55. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016), "The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach", Compos. Struct., 154, 190-218. https://doi.org/10.1016/j.compstruct.2016.07.041
  56. Vescovini, R. and Dozio, L. (2016), "A variable-kinematic model for variable stiffness plates: Vibration and buckling analysis", Compos. Struct., 142, 15-26. https://doi.org/10.1016/j.compstruct.2016.01.068
  57. Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2014), "Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery", Compos. Struct., 112, 44-65. https://doi.org/10.1016/j.compstruct.2014.01.039
  58. Wosu, S., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Composites Part B: Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045
  59. Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoust., 85, 130-142. https://doi.org/10.1016/j.apacoust.2014.04.006
  60. Yang, J. and Shen, H.S. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5

피인용 문헌

  1. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1545588
  2. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
  3. Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction vol.49, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1689140
  4. Free vibration analysis of composite conical shells using Walsh series method vol.8, pp.7, 2021, https://doi.org/10.1088/2053-1591/ac0eb7