References
- Badallo, P., Trias, D., Marin, L. and Mayugo, J.A. (2013), "A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression load", Compos. Part B, 47, 130-136. https://doi.org/10.1016/j.compositesb.2012.10.037
- Bagheri, M., Jafari, A.A. and Sadeghifar, M. (2011), "Multiobjective optimization of ring stiffened cylindrical shells using a genetic algorithm", J. Sound Vib., 330(3), 374-384. https://doi.org/10.1016/j.jsv.2010.08.019
- Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer
- Chatzi, E.N., Hiriyur, B., Waisman, H. and Smyth, A.W. (2011), "Experimental application and enhancement of the XFEM-GA algorithm for the detection of flows in structures", Comput. Struct., 89(7-8), 556-570. https://doi.org/10.1016/j.compstruc.2010.12.014
- Cho, J.R., Lee, J.H., Kim, K.W. and Lee S.B. (2013), "Generalized evolutionary optimum design of fiber-reinforced tire belt structure", Steel Compos. Struct., 15(4), 451-466. https://doi.org/10.12989/scs.2013.15.4.451
- Falzon, B.G. and Faggiani, A. (2012), "The use of a genetic algorithm to improve the postbuckling strength of stiffened composite panel susceptible to secondary instabilities", Compos. Struct., 94(3), 883-895. https://doi.org/10.1016/j.compstruct.2011.10.015
- Ghiasi, H., Fayazbakhsh, K., Pasini, D. and Lessard, L. (2010), "Optimum stacking sequence design of composite materials Part II: Variable stiffness design", Compos. Struct., 93(1), 1-13. https://doi.org/10.1016/j.compstruct.2010.06.001
- Ghiasi, H., Pasini, D. and Lessard, L. (2009), "Optimum stacking sequence design of composite materials Part I: Constant stiffness design", Compos. Struct., 90(1), 1-11. https://doi.org/10.1016/j.compstruct.2009.01.006
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd Edition, Springer series in statistics.
- Kayikci, R. and Sonmez, F.O. (2012), "Design of composite laminates for optimum frequency response", J. Sound Vib., 331(8), 1759-1776. https://doi.org/10.1016/j.jsv.2011.12.020
- Kocak, Y, Gulbandilar, E. and Akcay, M. (2015), "Predicting the compressive strength of cement mortars containing FA and SF by MLPNN", Comput. Concrete, 15(5), 759-770. https://doi.org/10.12989/cac.2015.15.5.759
- Lee, D.S., Morillo, C., Bugeda, G., Oller, S. and Onate, E. (2012), "Multilayered composite structure design optimization using distributed/parallel multi-objective evolutionary algorithms", Compos. Struct., 94(3), 1087-1096. https://doi.org/10.1016/j.compstruct.2011.10.009
- Mohri, M., Rostamizadeh, A. and Talwalkar, A. (2012), Foundations of Machine Learning, MIT Press.
- Montagnier, O. and Hochard, Ch. (2013), "Optimization of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive shafts", Mater. Des., 46, 88-100. https://doi.org/10.1016/j.matdes.2012.09.035
- Murphy, K.P. (2012), Machine Learning: a Probabilistic Perspective, 1st Edition, MIT Press.
- Murugan, S., Flores, E.I.S., Adhikari, S. and Friswell, M.I. (2012), "Optimal design of variable fiber spacing composites for morphing aircraft skin", Compos. Struct., 94(5), 1626-1633. https://doi.org/10.1016/j.compstruct.2011.12.023
- Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
- Papadopoulos, L. and Kassapoglou, C. (2007), "Shear buckling of rectangular composites plates composed of concentric layups", Compos. Part A., 38(5), 1425-1430. https://doi.org/10.1016/j.compositesa.2006.05.008
- Park, C.H., Lee, W.I., Han, W.S. and Vautrin, A. (2008), "Improved genetic algorithm for multidisciplinary optimization of composites laminates", Comput. Struct., 86(19-20), 1894-1903. https://doi.org/10.1016/j.compstruc.2008.03.001
- Pohlak, M., Majak, J., Karjust, K. and Kuttner, R. (2010), "Multicriteria optimization of large composite parts", Compos. Struct., 92(9), 2146-2152. https://doi.org/10.1016/j.compstruct.2009.09.039
- Samui, P. (2011a), "Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT", Nat. Hazard., 59(2), 811-822. https://doi.org/10.1007/s11069-011-9797-5
- Samui, P. (2011b), "Prediction of pile bearing capacity using support vector machine", Int. J. Geotech. Eng., 5(1), 95-102. https://doi.org/10.3328/IJGE.2011.05.01.95-102
- Serban, A. (2016), "Fast and robust Matlab-based finite element model used in the layup optimization of composite laminates", Proceedings of the 7th International Conference on Advanced Concepts in Mechanical Engineering, Iasi, Romania, June.
- Sharma, D.S., Patel, N.P. and Trivedi, R.R. (2014), "Optimum design of laminates containing an elliptical hole", Int. J. Mech. Sci., 85, 76-87. https://doi.org/10.1016/j.ijmecsci.2014.04.019
- Sliseris, J. and Rocens, K. (2013), "Optimal design of composite plates with discrete variable thickness", Compos. Struct., 98, 15-23. https://doi.org/10.1016/j.compstruct.2012.11.015
- Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
- Yong, M., Falzon, B.G. and Iannucci, L. (2008), "On the application of genetic algorithms for optimizing composites against impact loading", Int. J. Impact Eng., 35, 1293-1302. https://doi.org/10.1016/j.ijimpeng.2007.10.004
- Yong, M., Iannucci, L. and Falzon, B.G. (2010), "Efficient modelling and optimization of hybrid multilayered plates subject to ballistic impact", Int. J. Impact Eng., 37(6), 605-624. https://doi.org/10.1016/j.ijimpeng.2009.07.004