DOI QR코드

DOI QR Code

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • Received : 2017.07.19
  • Accepted : 2017.09.02
  • Published : 2017.12.30

Abstract

This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Keywords

References

  1. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  2. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659
  3. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091
  4. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  5. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882
  6. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  7. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  8. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
  9. Farsadi, M., O chsner, A. and Rahmandoust. M. (2013), "Numerical investigation of composite materials reinforced with waved carbon nanotubes", J. Compos. Mater., 47(11), 1425-1434. https://doi.org/10.1177/0021998312448495
  10. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
  11. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solid., 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0
  12. Ghavamian, A., Rahmandoust, M. and O chsner, A. (2012), 62, "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003
  13. Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65, 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021
  14. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  15. Houmat, A. (2001), "A sector Fourier p-element applied to free vibration analysis of sectorial plates", J. Sound Vib., 243(2), 269-282. https://doi.org/10.1006/jsvi.2000.3410
  16. Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X
  17. Koizumi, M. (1993), "The concept of FGM", Ceram. Tran. Funct. Grad. Mater., 34, 3-10.
  18. Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. Tran. ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735
  19. Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2
  20. Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
  21. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
  22. Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2
  23. Marin, M. (2010), "Harmonic vibrations in thermoelasticity of microstretch materials", J. Vib. Acoust., 132(4), 501-506.
  24. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002
  25. McGee, O.G., Huang, C.S. and Leissa, A.W. (1995), "Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges", Int. J. Mech. Sci., 37(5), 537-566. https://doi.org/10.1016/0020-7403(94)00050-T
  26. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018
  27. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
  28. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
  29. Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1
  30. Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1
  31. Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
  32. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
  33. Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079
  34. Ramaiah, G.K. and Vijayakumar, K. (1974), "Natural frequencies of circumferentially truncated sector plates with simply supported straight edges", J. Sound Vib., 34(1), 53-61. https://doi.org/10.1016/S0022-460X(74)80354-8
  35. Ramakris, R. and Kunukkas, V.X. (1973), "Free vibration of annular sector plates", J. Sound Vib., 30(1), 127-129. https://doi.org/10.1016/S0022-460X(73)80055-0
  36. Reddy J.N. (2013), An Introduction to Continuum Mechanics, Second Edition, Cambridge University Press.
  37. Seok, J.W. and Tiersten, H.F. (2004), "Free vibrations of annular sector cantilever plates part 1: out-of-plane motion", J. Sound Vib., 271(3-5), 757-772. https://doi.org/10.1016/S0022-460X(03)00414-0
  38. Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683
  39. Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030
  40. Sharma, K. and Marin, M. (2013), "Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", U.P.B. Sci. Bull., Ser. A-Appl. Math. Phys., 75(2), 121-132.
  41. Shen H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  42. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  43. Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. B Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
  44. Srinivasan, R.S. and Thiruvenkatachari, V. (1983), "Free vibration of annular sector plates by an integral equation technique", J. Sound Vib., 89(3), 425-432. https://doi.org/10.1016/0022-460X(83)90546-1
  45. Srinivasan, R.S. and Thiruvenkatachari, V. (1986), "Free vibration analysis of laminated annular sector plates", J. Sound Vib., 109(1), 89-96. https://doi.org/10.1016/S0022-460X(86)80024-4
  46. Swaminadham, M., Danielski, J. and Mahrenholtz, O. (1984), "Free vibration analysis of annular sector plates by holographic experiments", J. Sound Vib., 95(3), 333-340. https://doi.org/10.1016/0022-460X(84)90672-2
  47. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623
  48. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/SCS.2017.24.6.711
  49. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stressinduced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680
  50. Weidt, D. and Figiel, L. (2015), "Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites", Compos. Sci. Technol., 115, 52-59. https://doi.org/10.1016/j.compscitech.2015.04.018
  51. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161
  52. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005
  53. Zhou, D., Lo, S.H. and Cheung, Y.K. (2009), "3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method", J. Sound Vib., 320(1-2), 421-437. https://doi.org/10.1016/j.jsv.2008.08.001
  54. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuat., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5

Cited by

  1. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.183