DOI QR코드

DOI QR Code

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit (Laboratoire d'Elaboration, de Caracterisation des Materiaux et Modelisation (LEC2M), Universite Mouloud Mammeri de Tizi-Ouzou) ;
  • Aberkane, Meziane (Laboratoire d'Elaboration, de Caracterisation des Materiaux et Modelisation (LEC2M), Universite Mouloud Mammeri de Tizi-Ouzou)
  • Received : 2016.06.07
  • Accepted : 2017.08.10
  • Published : 2017.12.30

Abstract

Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.

Keywords

References

  1. Aberkane, M., Lenkey, G.Y.B. and Pluvinage, G. (2001) "Dynamic fracture toughness of cast steel used for nuclear waste containers with notched charpy specimen", Transactions SMiRT 16, Washington DC, August.
  2. Akourri, O., Louah, M., Kifani, A., Gilgert, G. and Pluvinage, G. (2000), "The effect of notch radius on fracture toughness JIC", Eng. Fract. Mech., 65, 491-505. https://doi.org/10.1016/S0013-7944(99)00109-5
  3. ANSYS (2016), http://www.ansys.stuba.sk
  4. Bannister, A.C. (1998), "Determination of fracture toughness from charpy impact energy: procedure and validation", Sub-Task 3.3 Report. No SINTAP/BS/17; British Steel plc, Swinden Technology Centre Moorgate, Rotherham S60 3AR, United Kingdom.
  5. Barthelemy, B. (1980), Notions Pratiques De La Mecanique De La Rupture, (Practical concepts of fracture mechanics), Lavoisier Edition, France.
  6. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey.
  7. Berdin, C. and Prioul, C. (2007), "Relation resilience-tenaciteapports de la modelisation numerique", (Fracture energytoughness relationship- contributions of numerical modeling) Document m4168-Techniques de l'ingenieur, Paris, France
  8. Brnic, J., Turkalj, G. and Canadija, M. (2014), "Mechanical testing of the behavior of steel 1.7147 at different temperatures", Steel Compos. Struct., 17(5), 549-560. https://doi.org/10.12989/scs.2014.17.5.549
  9. Chaudhari, V.V., Kulkarn, D.M. and Prakash, R. (2009), "Study of influence of notch root radius on fracture behaviour of extra deep drawn steel sheets", Fatigue Fract. Eng. Mater. Struct., 32, 975-86 https://doi.org/10.1111/j.1460-2695.2009.01401.x
  10. Eberle, A., Klingbeil, D. and Schicker, J. (2000), "The calculation of dynamic Jr-curves from the finite element analysis of a Charpy test using a rate-dependent damage model", Nucl. Eng. Des., 198, 75-87. https://doi.org/10.1016/S0029-5493(99)00281-2
  11. Firrao, R. and Robert, R. (1983), "Ductile fracture nucleation ahead of sharp cracks", Metall. Sci. Technol., 1, 5-13.
  12. Hohe, J., Siegle, D., Bechler, E. and Nagel, G. (2015), "Standard and customized correlation of crack resistance curves and charpy shelf energy for german reactor pressure vessel steels", Int. J. Pres. Ves. Pip., 134, 101-111. https://doi.org/10.1016/j.ijpvp.2015.08.009
  13. Kapp, J.A. and Underwood, J.I.L. (1992), "Correlation between fracture toughness, charpy v-notch impact energy, and yield strength for astm a723 steel", Memorandum report ARCCBMR-92008, US Army Armament Research, Development and Engineering Center, New York, USA.
  14. Kim, S.H., Park, Y.W., Kang, S.S. and Chung, H.D. (2002), "Estimation of fracture toughness transition curve of rpv steels from charpy impact test data", Nucl. Eng. Des., 212, 49-57. https://doi.org/10.1016/S0029-5493(01)00479-4
  15. Lucon, E. (2016), "Estimating dynamic ultimate tensile strength from instrumented Charpy data", Mater. Des., 97, 437-443. https://doi.org/10.1016/j.matdes.2016.02.116
  16. Mourad, A.H.I and EL-Domiaty, A. (2011), "Notch radius and specimen size effects on fracture toughness of low alloy steel", Procedia Eng., 10, 1348-1353. https://doi.org/10.1016/j.proeng.2011.04.224
  17. Mourad, A.H.I., El-Domiaty, A. and Chao, Y.J. (2013), "Fracture toughness prediction of low alloy steel as a function of specimen notch root radius and size constraints", Eng. Fract. Mech., 103, 79-93. https://doi.org/10.1016/j.engfracmech.2012.05.010
  18. Nilsson, F. and O stensson, B. (1978), "JIC-testing of A-533 B statistical evaluation of some different testing techniques", Eng. Fract. Mech., 10(2), 223-232. https://doi.org/10.1016/0013-7944(78)90006-1
  19. Pettarin, V., Elicabe, G.E., Frontini, P.M., Leskovics, K., Lenkey, G.Y.B. and Czigany, T. (2006), "Analysis of low temperature impact fracture data of thermoplastic polymers making use of an inverse methodology", Eng. Fract. Mech., 73, 738-749. https://doi.org/10.1016/j.engfracmech.2005.10.005
  20. Pluvinage, G. (2007), Fracture and Fatigue Emanating from Stress Concentrators, Springer Science et Business Media, Dordrecht, Netherland.
  21. Qamar, S.Z., Sheikh, A.K., Arif, A.F.M. and Pervez, T. (2006) "Regression-based CVN-KIC models for hot work tool steels", Mater. Sci. Eng. A, 430 (1-2), 208-215. https://doi.org/10.1016/j.msea.2006.05.103
  22. Rink, M., Andena, L. and Marano, C. (2014), "The essential work of fracture in relation to J-integral", Eng. Fract. Mech., 127, 46-55. https://doi.org/10.1016/j.engfracmech.2014.05.006
  23. Rossoll, A., Berdin, C., Forget, P., Prioul, C. and Marini, B. (1999), "Mechanical aspect of the Charpy impact test", Nucl. Eng. Des., 188, 217-229,. https://doi.org/10.1016/S0029-5493(99)00017-5
  24. Schindler, H.J. and Bertschinger, P. (2002), "Relation of fracture energy of sub-sized Charpy specimens to standard Charpy energy and fracture toughness", Transferability of Fracture Mechanical Characteristics, Edited by Ivo Dlouhy, NATO Sciences Series, 213-224.
  25. Schindler, H.J. and Veidt, M. (1998), "Fracture toughness evaluation from instrumented sub-size charpy-type tests", Small Spec. Test Techniq., ASTM STP, 1329, 48-61.
  26. Schmitt, W, Sun, D.Z., Bohme, W and Nagel, G. (1994), "Evaluation of fracture toughness based on results of instrumented Charpy tests", Int. J. Pres. Ves. Pip., 59, 21-29 https://doi.org/10.1016/0308-0161(94)90138-4
  27. Sreenivasan, P.R. (2014), "Estimation of quasi-static Jr-curves from charpy energy and adaptation to asme e 1921 reference temperature estimation of ferritic steels", Nucl. Eng. Des., 269, 125-129. https://doi.org/10.1016/j.nucengdes.2013.08.017
  28. Srinivas, M. and Kamat, S.V. (1992), "Effect of notch root radius on ductile fracture toughness of Armco Iron", Int. J. Fract. Mech., 58, 15-21. https://doi.org/10.1007/BF00019756
  29. Teran, G., Capula-Colindres, S., Angeles-Herrera, D., Velazquez, J.C. and Fernandez-Cueto, M.J. (2016), "Estimation of fracture toughness kic from impact test data in t-welded connections repaired by grinding and wet welding", Eng. Fract. Mech., 153, 351-359. https://doi.org/10.1016/j.engfracmech.2015.12.010
  30. Tuba, F., Olah, L. and Nagy, P. (2013), "On the valid ligament range of specimens for the essential work of fracture method: The inconsequence of stress criteria", Eng. Fract. Mech., 99, 349-355. https://doi.org/10.1016/j.engfracmech.2012.12.011
  31. Turner, C.E. (1984), "Methods for post-yield fracture safety assessment", Post-Yield Fracture Mechanics, Eds. Latzko. D.G.H, Turner. C.E., Landes. J.D., Mc Cabe. D.E. and Hellen. T.K., Elsevier, England.
  32. Witts, N.P. (2005), "Evaluation of the non linear fracture parameters J and C* wit ANSYS", Safe Consultancy, Leicester, UK.

Cited by

  1. Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.517