DOI QR코드

DOI QR Code

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane

파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구

  • Han, Jang Hoon (Department of Chemical Engineering, Kongju National University) ;
  • Ji, Seong-Bin (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Ye-Sol (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Seung-Hyun (Department of Chemical Engineering, Kongju National University) ;
  • Park, Seo-Hui (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 한장훈 (공주대학교 화학공학부) ;
  • 지성빈 (공주대학교 화학공학부) ;
  • 김예솔 (공주대학교 화학공학부) ;
  • 이승현 (공주대학교 화학공학부) ;
  • 박서희 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2017.06.01
  • Accepted : 2017.08.04
  • Published : 2017.12.01

Abstract

This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and $45^{\circ}C$), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination ($r^2$) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy ($E_a$) was 4.9815 kJ/mol and the standard Gibbs free energy change (${\Delta}G^0$) was negative, whereas the standard enthalpy change (${\Delta}H^0$) and standard entropy change (${\Delta}S^0$) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

본 연구에서는 회전증발에서 건조 온도에 따른 파클리탁셀의 잔류 펜탄 제거 효율에 대해 조사하였으며 건조 공정에 대한 동역학 및 열역학적 해석을 수행하였다. 모든 온도(25, 30, 35, 40, $45^{\circ}C$)에서 건조 초기에 많은 양의 잔류용매가 제거되었으며 건조 온도가 증가할수록 건조 효율은 증가하였다. 동역학적 해석을 위해 실험데이터 값을 다섯 종류의 건조 모델식(Newton, Page, Modified Page, Henderson and Pabis, Geometric)에 적용하였으며, 이 중 Henderson and Pabis 모델이 큰 결정계수 값과 작은 평균평방근편차 RMSD 값을 가져 가장 적합함을 확인하였다. 또한 열역학적 해석을 수행한 결과, 회전증발에서의 활성화 에너지 $E_a$는 4.9815 kJ/mol이었으며, 표준 Gibbs 자유에너지 변화(${\Delta}G^0$)는 음수 값인 반면 표준 엔탈피 변화(${\Delta}H^0$)와 표준 엔트로피 변화(${\Delta}S^0$)는 양수 값을 나타내어 건조 공정이 자발적 흡열반응이며 비가역적으로 수행됨을 알 수 있었다.

Keywords

References

  1. Wani, M. C., Taylor, H., Wall, M. E., Coggon, P. and McPhail, A. T., "Plant Antitumor Agents. VI. The Isolation and Structure of Taxol, A Novel Antileukemic and Antitumor Agent from Taxus brevifolia," J. Am. Chem. Soc., 93(9), 2325-2326(1971). https://doi.org/10.1021/ja00738a045
  2. Kim, J. H., "Paclitaxel: Recovery and Purification in Commercialization Step," Korean J. Biotechnol. Bioeng., 21(1), 1-10(2006).
  3. Ha, G. S. and Kim, J. H., "Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures," Korean Chem. Eng. Res., 54(2), 229-233(2016). https://doi.org/10.9713/kcer.2016.54.2.229
  4. Hsiao, J. R., Leu, S. F. and Huang, B. M., "Apoptotic Mechanism of Paclitaxel-Induced Cell Death in Human Head and Neck Tumor Cell Lines," J. Oral Pathol. Med., 38(2), 188-197(2009). https://doi.org/10.1111/j.1600-0714.2008.00732.x
  5. Rao, K., Hanuman, J., Alvarez, C., Stoy, M., Juchum, J., Davies, R. and Baxley, R., "A New Large-Scale Process for Taxol and Related Taxanes from Taxus brevifolia," Pharm. Res., 12(7), 1003-1010 (1995). https://doi.org/10.1023/A:1016206314225
  6. Baloglu, E. and Kingston, D. G. I., "A New Semisynthesis of Paclitaxel from Baccatin?," J. Nat. Prod., 62(7), 1003-1010(1999). https://doi.org/10.1021/np980169e
  7. Choi, H. K., Son, J. S., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture," Korean J. Plant Biotechnol., 29(1), 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  8. Lee, C. G. and Kim, J. H., "Separation Behavior of Paclitaxel and Its Semi-synthetic Precursor 10-Deacetylpaclitaxel from Plant Cell Cultures," Korean Chem. Eng. Res., 54(1), 89-93(2016). https://doi.org/10.9713/kcer.2016.54.1.89
  9. Hancock, B. C. and Parks, M., "What is the True Solubility Advantage for Amorphous Pharmaceuticals," Pharm. Res., 17(4), 397-404 (2000). https://doi.org/10.1023/A:1007516718048
  10. Hancock, B. C. and Zografi, G., "Characteristics and Significance of the Amorphous State in Pharmaceutical System," J. Pharm. Sci., 86(1), 1-12(1997). https://doi.org/10.1021/js9601896
  11. Khadka, P., Ro, J. E., Kim, H. M., Kim, I. S., Kim, J. T., Kim, H. I., Cho, J. M., Yun, G. A. and Lee, J. H., "Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability," Asian J. Pharm. Sci., 9(6), 304-316(2014). https://doi.org/10.1016/j.ajps.2014.05.005
  12. Pyo, S. H., Cho, J. S., Choi, H. J. and Han, B. H., "Preparation and Dissolution Profiles of the Amorphous, Dihydrated Crystalline, and Anhydrous Crystalline Forms of Paclitaxel," Drying Technol., 25(10), 1759-1767(2007). https://doi.org/10.1080/07373930701593180
  13. Karunanithi, A. T., Acquah, C., Achenie, L. E. K., Sithambaram, S. and Suib, S. L., "Solvent Design for Crystallization of Carboxylic Acids," Comput. Chem. Eng., 33(5), 1014-1021(2009). https://doi.org/10.1016/j.compchemeng.2008.11.003
  14. Liggins, R. T., Hunter, W. L. and Burt, H. M., "Solid-State Characterization of Paclitaxel," J. Pharm. Sci., 86(12), 1458-1463(1997). https://doi.org/10.1021/js9605226
  15. Lee, J. H., Gi, U. S., Kim, J. H., Kim, Y., Kim, S. H. and Oh, H. M., "Preparation and Characterization of Solvent Induced Dihydrated, Anhydrous, and Amorphous Paclitaxel," B., Bull. Korean Chem. Soc., 22(8), 925-928(2001).
  16. International Conference on Harmonisation, "Guidance Q3C Impurities: Residual Solvents," Federal Register, 62, 67377-67388 (1997).
  17. Kim, J. H., Park, H. B., Gi, U. S., Kang, I. S., Choi, H. K. and Hong, S. S., "Removal of Residual Solvents in Paclitaxel by Supercritical Carbon Dioxide," Korean J. Biotechnol. Bioeng., 16(3), 233-236 (2001).
  18. Lee, J. Y. and Kim, J. H., "Microwave-Assisted Drying of Paclitaxel for Removal of Residual Solvents," Process Biochem., 48(3), 545-550(2013). https://doi.org/10.1016/j.procbio.2013.01.015
  19. Drouzas, A. E., Tsami, E. and Saravacos, G. D., "Microwave/Vacuum Drying of Model Fruit Gels," J. Food Eng., 39, 117-122 (1999). https://doi.org/10.1016/S0260-8774(98)00133-2
  20. Ha, G. S. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Ultrasound-Assisted Extraction for Recovery of Paclitaxel from Biomass," Process Biochem., 51(10), 1664-1673(2016). https://doi.org/10.1016/j.procbio.2016.08.012
  21. Gi, U. S., Min, B., Lee, J. H. and Kim, J. H., "Preparation and Characterization of Paclitaxel from Plant Cell Culture," Korean J. Chem. Eng., 21(4), 816-820(2004). https://doi.org/10.1007/BF02705526
  22. Kawashima, Y. and York, P., "Drug Delivery Applications of Supercritical Fluid Technology," Adv. Drug Deliv. Rev., 60, 297-298 (2008). https://doi.org/10.1016/j.addr.2007.10.011
  23. Lee, J. Y. and Kim, J. H., "Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation," Korean J. Microbiol. Biotechnol., 40(2), 169-174(2012). https://doi.org/10.4014/kjmb.1202.02005
  24. Lee, C. G. and Kim, J. H., "Improved Drying Method for Removal of Residual Solvents from Paclitaxel by Pre-Treatment with Ethanol and Water," Process Biochem., 50(6), 1031-1036(2015). https://doi.org/10.1016/j.procbio.2015.02.018
  25. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel From Cell Cultures of Taxus chinensis," Process Biochem., 39(12), 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  26. Diamante, L. M. and Munro, P. A., "Mathematical Modeling of the Thin Layer Solar Drying of Sweet Potato Slices," Sol. Eng., 51(4), 271-276(1993). https://doi.org/10.1016/0038-092X(93)90122-5
  27. Aregbesola, A., Ogunsina, B. S., Sofolahan, A. E. and Chime, N. N., "Mathematical Modeling of Thin Layer Drying Characteristics of Dika (Irvingia Gabonensis) Nuts and Kernels," Niger. Food J., 33(1), 83-89(2015). https://doi.org/10.1016/j.nifoj.2015.04.012
  28. Page, G. E., "Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-Layers," M.S. Thesis, Purdue University, West Lafayette, Indiana, USA(1949).
  29. White, G. M., Loewer, T. C. and Ross, I. J., "Seed Coat Damage in Thin Layer Drying of Soybeans as Affected by Drying Conditions," Trans. ASAE, 23(1), 0224-0227(1978). https://doi.org/10.13031/2013.34559
  30. Henderson, S. M. and Pabis, S., "Grain Drying Theory I. Temperature Effect on Drying Coefficient," J. Agric. Eng. Res., 6(3), 169-174 (1961).
  31. Chinweuba, D. C., Nwakuba, R. N. and Okafor, V. C., "Thin Layer Drying Modelling for Some Selected Nigerian Produce: A Review," Am. J. Food. Sci. Nutr. Res., 3(1), 1-15(2016).
  32. Prasad, B. E. and Pandey, K. K., "Microwave Drying of Bamboo," Eur. J. Wood Prod., 70, 353-355(2012). https://doi.org/10.1007/s00107-010-0496-9
  33. Ozken, I. A., Akbudak, B. and Akbudak, N., "Microwave Drying Characteristics of Spinach," J. Food Eng., 78(2), 577-583(2007). https://doi.org/10.1016/j.jfoodeng.2005.10.026
  34. Lee, H. and Han, C. S., "Drying and Quality Characteristics of Agriculutral and Fishery Products Using far Infrared Rays," M.S. Thesis, Chungbuk National University, Cheongju, Korea (2009).
  35. Niladevi, K. M., Sukumaran, R. K., Jacob, N., Anisha, G. S. and Prema, P., "Optimization of Laccase Production from A Novel Strain-Streptomyces Psammoticus Using Response Surface Methodology," Microbiol. Res. 164(1), 105-113(2009). https://doi.org/10.1016/j.micres.2006.10.006
  36. Kim, H. S. and Kim, J. H., "Kinetics and Thermodynamics of Microwave-Assisted Drying of Paclitaxel for Removal of Residual Methylene Chloride," Process Biochem., 56, 163-170(2017). https://doi.org/10.1016/j.procbio.2017.02.007
  37. Babalis, S. J. and Belessiotis, V. G., "Influence of the Drying Conditions on the Drying Constants and Moisture Diffusivity During the Thin-Layer Drying of Figs," J. Food Eng., 65(3), 449-458(2004). https://doi.org/10.1016/j.jfoodeng.2004.02.005
  38. Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P., "Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rich Husk," Desalination, 265, 159-168(2011). https://doi.org/10.1016/j.desal.2010.07.047

Cited by

  1. Removal of residual chloroform from amorphous paclitaxel pretreated by alcohol vol.36, pp.12, 2017, https://doi.org/10.1007/s11814-019-0413-9
  2. Development of Drying Process for Removal of Residual Moisture from Biomass Pretreated with Ethanol and Its Kinetic and Thermodynamic Analysis vol.26, pp.5, 2021, https://doi.org/10.1007/s12257-021-0193-z