DOI QR코드

DOI QR Code

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel

폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 감상규 (제주대학교 환경공학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2017.05.22
  • Accepted : 2017.07.24
  • Published : 2017.12.01

Abstract

A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

제주의 농업폐기물인 감귤박으로 제조한 활성탄(WCAC)을 수용액 중의항생제 dimetridazole (DMZ)를 제거하기 위해 사용하였다. WCAC에의한 DMZ의 흡착을 접촉시간, WCAC의 투여량, WCAC의 입자크기, 온도, pH 및 DMZ 농도와 같은 다양한 조건하에서 연구하였다. DMZ의 흡착량은 온도가 증가하고 입자크기가 감소함에 따라 증가하였다. 또한, pH 4 이상에서는 DMZ의 흡착량이 거의 일정하게 유지되었지만, pH 4 이하에서는 감소하는 경향을 보였다. 흡착등온 결과를 Langmuir, Freundlich, Redlich-Peterson 및 Duinin-Radushkevich (D-R) 등온 모델식에 적용하여 검토한 결과 Redlich-Peterson 등온 모델식에 의해 가장 잘 설명되었다. 흡착속도는 유사 2차 속도 모델에 잘 적용될 수 있었으며, 입자 내 확산 모델의 결과로부터 흡착 과정 동안 막 확산과 입자 내 확산이 동시에 일어나는 것을 알 수 있었다. 열역학적 파라미터는 WCAC에 대한 DMZ의 흡착반응은 흡열반응이고 자발적인 과정으로 진행된다는 것을 나타내었다. 실험결과는 WCAC가 항생제 DMZ를 제거하는데 있어서 값싸고 유용한 흡착제가 될 수 있다는 것을 보여주었다.

Keywords

References

  1. Kim, J.-H., Park, C.-K., Kim, M. Y. and Ahn, S. G., "Contamination of Veterinary Antibiotics and Antimicrobials in Han River Basin," J. Kor. Soc. Environ. Anal., 11, 109-118(2008).
  2. Choi, K.-H., Kim, P.-G. and Park, J.-I., "Pharmaceuticals in Environment and Their Implication in Environmental Health," J. Env. Hlth. Sci., 35, 433-446(2009).
  3. Kim, M. H., Park, J., Kim, Y. H. and Choi, K. H., "Prioritizing Human Use Antibiotics for Environmental Health Management and Estimating Their Environmental Concentrations in Korean Waterway," Kor. J. Env. Hlth., 32, 462-468(2006).
  4. Jo, J.-H., Lim, D.-H. and Seo, G. T., "A Study on the Adsorption of Sulfonamide Antibiotics on Activated Carbon using Density Functional Theory," J. Kor. Soc. Environ. Eng., 35, 457-463 (2013). https://doi.org/10.4491/KSEE.2013.35.7.457
  5. Wan, S., Hua, Z., Sun, L., Bai. X. and Liang, L., "Biosorption of Nitroimidazole Antibiotics onto Chemically Modified Porous Biochar prepared by Experimental Design: Kinetics, Thermodynamics and Equilibrium Analysis," Pro. Safety & Environ. Protect., 104, 422-435(2016). https://doi.org/10.1016/j.psep.2016.10.001
  6. Gros, M., Mira, P., Ginebreda, A. and Barceloo, D., "Removal of Pharmaceuticals during Wastewater Treatment and Environmental Risk aAssessment using Hazard Indexes," Environ. Int., 36, 15-26(2010). https://doi.org/10.1016/j.envint.2009.09.002
  7. Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., Cheung, P. C., Chun, Y. K., Murphy, M. B. and Lam, P. K. S., "Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China," Environ. Health Perspect, 121, 839-846(2013). https://doi.org/10.1289/ehp.1206244
  8. Mahugo-Santana, C., Sosa-Ferrera, Z., Torres-Padron, M. E. and Santana-Rodriguez, J. J., "Analytical Methodologies for the Determination of Nitroimidazole Residues in Biological and Environmental Liquid Samples: A Review," Anal. Chim. Acta, 665, 113-122(2010). https://doi.org/10.1016/j.aca.2010.03.022
  9. Bendesky, A., Menendez, D. and Ostrosky-Wegman, P., "Is Metronidazole Carcinogenic?," Mutat. Res. Rev. Mutat, 511, 133-144 (2002). https://doi.org/10.1016/S1383-5742(02)00007-8
  10. Falas, P., Babillon-Dhumez, A., Andersen, H. R., Ledin, A. and la Cour Jansen, J., "Suspended Biofilm Carrier and Activated Sludge Removal of Acidic Pharmaceuticals," Water Res., 46, 167-1175(2012). https://doi.org/10.1016/j.watres.2011.10.045
  11. Son, H.-J., Hwang, Y.-D. and Yoo, P.-J., "Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process," J. Kor. Soc. Environ. Eng., 31, 186-192(2009).
  12. Tambosi, J. L., Felix de Sena, R., Favier, M., Gebhardt, W., Jose, H. J., Schroder, H. F. and Regina de Fatima, P. M. M., "Removal of Pharmaceutical Compounds in Membrane Bioreactors (MBR) Applying Submerged Membranes," Desalination, 261, 148-156 (2010). https://doi.org/10.1016/j.desal.2010.05.014
  13. Radjenovic, J., Petrovic, M. and Barcelo, D., "Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment," Water Res. 43, 831-841(2009). https://doi.org/10.1016/j.watres.2008.11.043
  14. Son, H.-J., Yoom, H.-S., Jang, S.-H., Kim, H.-S., Hong, S.-H., Park, W.-S. and Song, Y.-C., "Removal of Tetracycline Antibiotics using UV and $UV/H_{2}O_{2}$ Systems in Water," J. Environ. Sci. Intern., 23, 1359-1366(2014). https://doi.org/10.5322/JESI.2014.23.7.1359
  15. Broseus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauve, S., Barbeau, B. and Prevost, M., "Ozone Oxidation of Pharmaceuticals, Endocrine Disruptors and Pesticides during Drinking Water Treatment," Water Res., 43, 4707-4717(2009). https://doi.org/10.1016/j.watres.2009.07.031
  16. Yoon, Y., Westerhoff, P. and Snyder, S. A., "Adsorption of 3Hlabeled $17-{\beta}$ Estradiol on Powdered Activated Carbon," Water Air and Soil Pollution, 166, 343-351(2005). https://doi.org/10.1007/s11270-005-7274-z
  17. Fallou, H., Cimetiere, N., Giraudet, S., Wolbert, D. and Le Cloirec, P., "Adsorption of Pharmaceuticals onto Activated Carbon Fiber Cloths - Modeling and Extrapolation of Adsorption Isotherms at Very Low Concentrations," J. Environ. Manage., 166, 544-555(2016). https://doi.org/10.1016/j.jenvman.2015.10.056
  18. Grossberger, A., Hadar, Y., Borch, T. and Chefetz, B., "Biodegradability of Pharmaceutical Compounds in Agricultural Soils Irrigated with Treated Wastewater," Environ. Pollut., 185, 168-177 (2014). https://doi.org/10.1016/j.envpol.2013.10.038
  19. Subramani, A. and Joseph, G. J., "Treatment Technologies for Reverse Osmosis Concentrate Volume Minimization: A Review," Sep. Purif. Technol., 122, 472-489(2014). https://doi.org/10.1016/j.seppur.2013.12.004
  20. Kim, H. I., Lee, M. E., Kang, S. K. and Chung, J. W., "Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon," J. Kor. Soc. Environ. Eng., 35, 220-225(2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  21. Son, H.-J., Jung, J.-M., Roh, J.-S. and Yoo, P.-J., "Adsorption Characteristics of Sulfonamide Antibiotic Compounds in GAC Process," J. Kor. Soc. Environ. Eng., 30, 401-408(2008).
  22. Rivera-Utrilla, J., Prados-Joya, G., Sanchez-Polo, M., Ferro-Garcia, M. A. and Bautista-Toledo, I., "Removal of Nitroimidazole Antibiotics from Aqueous Solution by Adsorption/Bioadsorption on Activated Carbon," J. Hazard. Mater., 170, 298-305(2009). https://doi.org/10.1016/j.jhazmat.2009.04.096
  23. Korzh, E. A., Smolin, S. K. and Klymenko, N. A., "Kinetics of Adsorption of Pharmaceutical Substances from Aqueous Solutions on Activated Carbons," J. Water Chem. Technol., 38, 187-193(2016). https://doi.org/10.3103/S1063455X16040019
  24. Chang, E. E., Wan, J.-C., Kim, H. O., Liang, C. H., Dai, Y. D. and Chiang, P. C., "Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac and Sulfamethoxazole," The Scientific World Journal, 2015, 11-18(2015).
  25. Baccar, R. and Blanquez, P., "Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural Byproduct," Chem. Eng. J., 211, 310-317(2012).
  26. Mestre, A. S., Pires, J., Nogueira, J. M. F. and Carvalho, A. P., "Activated Carbons for the Adsorption of Ibuprofen," Carbon, 45, 1979-1988(2007). https://doi.org/10.1016/j.carbon.2007.06.005
  27. Flores-Cano, J. V., Sanchez-Polo, M., Messoud, J., Ocampo-Perez, R. and Rivera-Utrilla, J., "Overall Adsorption Rate of Metronidazole, Dimetridazole and Diatrizoate on Activated Carbons Prepared from Coffee Residues and Almond Shells," J. Environ. Manage., 169, 116-125(2016). https://doi.org/10.1016/j.jenvman.2015.12.001
  28. Kam, S. K., Kang, K. H. and Lee, M. G., "Preparation of Activated Carbon from Waste Citrus Peeles by KOH," Appl. Chem. Eng., Submitted (2017).
  29. Ucer, A., Uyanik, A. and Aygun, S. F., "Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) Ions by Tannic Acid Immobilised Activated Carbon," Sep. Purif. Technol., 47, 113-118(2006). https://doi.org/10.1016/j.seppur.2005.06.012
  30. Elif, C. and Sinem, G., "Adsorption Characteristics of Sulfamethoxazole and Metronidazole on Activated Carbon," Sep. Sci. Technol., 45, 244-255(2010). https://doi.org/10.1080/01496390903409419
  31. Ocampo-Perez, R., Orellana-Garcia, F., Sanchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., Lopez-Ramon, M. V. and Alvarez-Merino, M. A., "Nitroimidazoles Adsorption on Activated Carbon Cloth from Aqueous Solution," J. Colloid Interf. Sci., 401, 116-124(2013). https://doi.org/10.1016/j.jcis.2013.03.038
  32. Lee, M. G., Kam, S. K. and Suh, K. H., "Adsorption of Nondegradable Eosin Y by Activated Carbon," J. Environ. Sci. Intern., 21, 623-631(2012). https://doi.org/10.5322/JES.2012.21.5.623
  33. Lagergren, S., "About the Theory of So-called Adsorption of Soluble Substances," Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39(1898).
  34. Ho, Y. S. and McKay, G., "The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat," Can. J. Chem. Eng., 76, 822-827(1998). https://doi.org/10.1002/cjce.5450760419
  35. Mendez-Diaz, J. D., Prados-Joya, G., Rivera-Utrilla, J., Leyva- Ramos, R., Sanchez-Polo, M., Ferro-Garcia, M. A. and Medellin- Castillo, N. A., "Kinetic Study of the Adsorption of Nitroimidazole Antibiotics on Activated Carbons in Aqueous Phase," J. Colloid Interface Sci., 345, 481-490(2010). https://doi.org/10.1016/j.jcis.2010.01.089
  36. Weber, W. J. and Morris, J. C., "Equilibria and Capacities for Adsorption on Carbon," J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng., 90, 79-91(1964).
  37. Hameed, B. and Daud, F., "Adsorption Studies of Basic Dye on Activated Carbon Derived from Agricultural Waste: Hevea brasiliensis Seed Coat", Chem. Eng. J., 139, 48-55(2008). https://doi.org/10.1016/j.cej.2007.07.089
  38. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B. and Mishra, I. M., "Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics," Colloids Surf. A, 272, 89-104(2006). https://doi.org/10.1016/j.colsurfa.2005.07.016
  39. Bhattacharya, A. K. and Venkobacher, C., "Removal of Cadmium (II) by Low Cost Adsorbents," J. Environ. Eng. Div., 110, 110-122 (1984). https://doi.org/10.1061/(ASCE)0733-9372(1984)110:1(110)
  40. Michelson, D. L., Gideon, G. P., Pace, J. E. and Kutat, H. L., "Removal of Soluble Mercury from Wastewater by Complexing Technique," Project A-044-VA, VPl-WRRC-BULL, 74, 161(1975).
  41. Langmuir, I., "The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum," J. Am. Chem. Soc., 40, 1361-1403(1918). https://doi.org/10.1021/ja02242a004
  42. Freundlich, H. M. F., "Over the Adsorption in Solution," J. Phys. Chem., 57, 385-470(1906).
  43. Redlich, O. and Peterson, D. L., "A Useful Adsorption Isotherm," J. Phys. Chem., 63, 1024(1959). https://doi.org/10.1021/j150576a611
  44. Dubinin, M. M., "The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-uniform Surface," Chem. Rev., 60, 235-241(1960). https://doi.org/10.1021/cr60204a006
  45. Monika, J., Garg, V. and Kadirvelu, K., "Chromium (VI) Removal from Aqueous Solution using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372(2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  46. Ngah, W. S. W. and Hanafiah, M. A. K. M., "Adsorption of Copper on Rubber (Hevea Brasiliensis) Leaf Powder: Kinetic Equilibrium and Thermodynamic Studies," Biochem. Eng. J., 39, 521-530(2008). https://doi.org/10.1016/j.bej.2007.11.006
  47. Dorgan, M., Alkan, M., Demirbas, O., Ozdemir, Y. and Ozmetin, C., "Adsorption Kinetics of Maxilon Blue GRL onto Sepiolite from Aqueous Solutions," Chem. Eng. J., 124, 89-101(2006). https://doi.org/10.1016/j.cej.2006.08.016
  48. Lee, J. J., "Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activaed Carbon," Korean Chem. Eng. Res., 53(1), 64-70(2015). https://doi.org/10.9713/kcer.2015.53.1.64