DOI QR코드

DOI QR Code

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures

기판 온도에 따른 ZnO:Ga 박막의 특성

  • Kim, Jeong-Gyoo (Department of semiconductor Engineering, Gyeongsang National University) ;
  • Park, Ki-Cheol (Department of semiconductor Engineering, Gyeongsang National University)
  • 김정규 (경상대학교 반도체공학과) ;
  • 박기철 (경상대학교 반도체공학과)
  • Received : 2017.10.26
  • Accepted : 2017.10.30
  • Published : 2017.12.01

Abstract

Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.

Keywords

References

  1. M. Sahal, B. Hartiti, A. Ridah, M. Mollar, and B. Mari, Microelectron. J., 39, 1425 (2008). [DOI: https://doi.org/10.1016/j.mejo.2008.06.085]
  2. T. Minami, T. Miyata, and T. Yamamoto. J. Vac. Sci. Technol., A, 17, 1822 (1999). [DOI: https://doi.org/10.1116/1.581897]
  3. R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys., 83, 1087 (1998). [DOI: https://doi.org/10.1063/1.366798]
  4. K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, J. Vac. Sci. Technol., A, 15, 1074 (1997). [DOI: https://doi.org/10.1116/1.580432]
  5. K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon, and J. H. Kim, Curr. Appl. Phys., 10, S463 (2010). [DOI: https://doi.org/10.1016/j.cap.2010.02.028]
  6. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett., 77, 3761 (2000). [DOI: https://doi.org/10.1063/1.1331089]
  7. H. M. Kim, D. Y. Ma, and K. C. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 984 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.12.984]
  8. K. C. Park, H. K. Lee, D. Y. Ma, and G. H. Kim, Ungyong Mulli, 9, 450 (1996).
  9. J. A. Thornton. J. Vac. Sci. Technol., 11, 666 (1974). [DOI: https://doi.org/10.1116/1.1312732]
  10. J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, J. Electrochem. Soc., 154, H521 (2007). [DOI: https://doi.org/10.1149/1.2721760]
  11. K. C. Park, D. Y. Ma, and K. H. Kim, Thin Solid Films, 305, 201 (1997). [DOI: https://doi.org/10.1016/S0040-6090(97)00215-0]
  12. C. E. Kim, P. Moon, S. Kim, J. M. Myoung, H. W. Jang, J. Bang, and I. Yun, Thin Solid Films, 518, 6304 (2010). [DOI: https://doi.org/10.1016/j.tsf.2010.03.042]