Acknowledgement
Supported by : Indian Institute of Technology Delhi
References
- Antman, S.S. (2005), Nonlinear Problems of Elasticity, Springer.
- Benipal, G.S. (1994), "A study on the nonlinear elastic behavior of reinforced concrete structural elements under normal loading", Ph.D. Dissertation, Department of Civil Engineering, IIT Delhi.
- Benipal, G.S. (1994), "Rational mechanics of cracked concrete beams", Proceedings of the National Symposium on Structural Mechanics, Bangalore, June.
- Coarita, E. and Flores, L. (2015), "Nonlinear analysis of structures cable-truss", IACSIT Int. J. Eng. Tech., 7(3), 160-169. https://doi.org/10.7763/IJET.2015.V7.786
- Deng, H.Q., Li, T.J., Xue, B.J. and Wang, Z.W. (2015), "Analysis of thermally induced vibration of cable- beam structures", Struct. Eng. Mech., 53(3), 443-453. https://doi.org/10.12989/sem.2015.53.3.443
- Irvine, H.M. and Caughey, T.K. (1974), "The linear theory of free vibrations of a suspended cable", Math. Phys. Sci., 341(1626), 299-315. https://doi.org/10.1098/rspa.1974.0189
- Kim, K.S. and Lee, H.S. (2001), "Analysis of target configurations under dead loads for cable-supported bridges", Comput. Struct., 79, 2681-2692. https://doi.org/10.1016/S0045-7949(01)00120-1
- Kumar, P., Ganguli, A. and Benipal, G.S. (2016), "Theory of weightless sagging elasto-flexible cables", Latin Am. J. Solid. Struct., 13(1), 155-174. https://doi.org/10.1590/1679-78252110
- Kumar, P., Ganguli, A. and Benipal, G.S. (2017), "Mechanics of cable-suspended structures", Latin Am. J. Solid. Struct., 14(3), 544-559. https://doi.org/10.1590/1679-78253259
- Lacarbonara, W. (2013), Nonlinear Structural Mechanics: Theory Dynamical Phenomenon and Modelling, Springer.
- Lepidi, M. and Gattulli, V. (2014), "A parametric multi-body section model for modal interactions of cable- supported bridges", J. Sound Vib., 333, 4579-4596. https://doi.org/10.1016/j.jsv.2014.04.053
- Menon, D. (2009), Advanced Structural Analysis, Narosa.
- Pandey, U.K. and Benipal, G.S. (2006), "Bilinear dynamics of SDOF concrete structures under sinusoidal loading", Adv. Struct. Eng., 9(3), 393-407. https://doi.org/10.1260/136943306777641869
- Pandey, U.K. and Benipal, G.S. (2011), "Bilinear elastodynamical models of cracked concrete beams", Struct. Eng. Mech., 39(4), 465-498. https://doi.org/10.12989/sem.2011.39.4.465
- Rega, G. (2004), "Nonlinear vibrations of suspended cables-Part I: Modelling and analysis", Appl. Mech. Rev., 57(6), 443-478. https://doi.org/10.1115/1.1777224
- Santos, H.A.F.A. and Paulo, C.I.A. (2011), "On a pure complementary energy principle and a force-based finite element formulation for non-linear elastic cable", Int. J. Nonlin. Mech., 46, 395-406. https://doi.org/10.1016/j.ijnonlinmec.2010.10.005
- Sun, B., Zhang, L., Qin, Y. and Xiao, R. (2016), "Economic performance of cable supported bridges", Struct. Eng. Mech., 59(4), 621-652. https://doi.org/10.12989/sem.2016.59.4.621
- Vu, T.V., Lee, H.E. and Bui, Q.T. (2012), "Nonlinear analysis of cable-supported structures with a spatial catenary cable element", Struct. Eng. Mech., 43(5), 583-605 https://doi.org/10.12989/sem.2012.43.5.583
- Zhang, X., and Bui, T.Q. (2015), "A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures", Eng. Comput., 32(2), 473-497. https://doi.org/10.1108/EC-08-2013-0203