DOI QR코드

DOI QR Code

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire

자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착

  • Kim, Younjung (Center for Instrumental Analysis, Andong National University) ;
  • Uh, Eun Jeong (Department of Applied Chemistry, Andong National University) ;
  • Choi, Jong Ha (Department of Applied Chemistry, Andong National University) ;
  • Hong, Yong Pyo (Department of Applied Chemistry, Andong National University) ;
  • Kim, Daeik (School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University) ;
  • Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
  • 김연정 (안동대학교 공동실험실습관) ;
  • 우은정 (안동대학교 응용화학과) ;
  • 최종하 (안동대학교 응용화학과) ;
  • 홍용표 (안동대학교 응용화학과) ;
  • 김대익 (전남대학교 전기전자통신컴퓨터공학부) ;
  • 유건상 (안동대학교 응용화학과)
  • Received : 2017.09.13
  • Accepted : 2017.11.02
  • Published : 2017.12.20

Abstract

Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

자동차 폐타이어 분말(WTP)을 질소분위기 하에서 2시간 동안 $400^{\circ}C$의 온도에서 열처리하여 탄소질 흡착제(CA-WTP)로 만들고, 이들에 대한 열 중량 분석, 에너지 변환 X-선 분석, 주사전자 현미경, 비표면적 측정, 적외선 분광기들을 통해 특성을 파악한 후, 수중의 Cd의 제거를 위한 흡착제로서 시험하였다. 열처리한 CA-WTP는 WTP보다도 매우 높은 비표면적과 총 세공부피 그리고 Cd에 대해 높은 흡착효율을 나타내었다. 흡착의 평형 데이터는 Freundlich와 Langmuir 흡착 등온선 모델을 이용하여 평가하였고, 위 두 흡착 등온선 모두 0.95보다 큰 상관계수($R^2$) 값을 나타내었다. 연구의 결과는 열처리 한 폐타이어 분말(CA-WTP)이 수중으로부터 Cd을 흡착하는데 효율적인 흡착제로 사용될 수 있다는 것을 보였다.

Keywords

References

  1. Alexandre-Franco, M.; Fernandez-Gonzalez, C.; Alfaro-Dominguez, M.; Gomez-Serrano, V. J. Environ. Manage. 2011, 92, 2193. https://doi.org/10.1016/j.jenvman.2011.04.001
  2. Gupta, V. K.; Ganjali, M. R.; Nayak, A.; Bhushan, B. Agarwal, S. Chem. Eng. J. 2012, 197, 330. https://doi.org/10.1016/j.cej.2012.04.104
  3. Nieto-Marquez, A.; Pinedo-Flores, A.; Picasso, G.; Atanes, E.; Kou, R. S. J. Environ. Chem. Eng. 2017, 5, 1060. https://doi.org/10.1016/j.jece.2017.01.034
  4. LIanos, J.; Camarillo, R.; Perez, A.; Canizares, P. Purif. Technol. Sep. 2010, 73, 126. https://doi.org/10.1016/j.seppur.2010.03.015
  5. Kwon, J. S.; Yun, S. T.; Lee, S. O.; Kim, H. Y.; Jo, J. J. Hazard. Mater. 2010, 174, 307. https://doi.org/10.1016/j.jhazmat.2009.09.052
  6. Imyim, A.; Sirithaweesit, T.; Ruangpornvisuti, V. J. Environ. Manage. 2016, 166, 574. https://doi.org/10.1016/j.jenvman.2015.11.005
  7. 7. Kim, J. K.; Hwang, S. H.; Lee, S. H.; Jung, J. H. J. Kor. Inst. Res. Recycling 2003, 12, 28.
  8. Lee, J. Y. J. Korea Tire Manufactures Association 2005, 1, 41.
  9. Ayanoglu, A.; Yumrutas, R. Energy 2016, 103, 456. https://doi.org/10.1016/j.energy.2016.02.155
  10. Aoudia, K.; Azem, S.; Hocine, N. A.; Gratton, M.; Pettarin, V.; Seghar, S. Waste Manage. 2017, 60, 471. https://doi.org/10.1016/j.wasman.2016.10.051
  11. Lu, Q.; Alves de Toledo, R.; Xie, Fei.; Li, J.; Shim, H. Sci. Tot. Environ. 2017, 583, 88. https://doi.org/10.1016/j.scitotenv.2017.01.025
  12. Luo, S.; Feng, Y. Energy Conver. Manage. 2017, 136. 27. https://doi.org/10.1016/j.enconman.2016.12.076
  13. Lian, Fei.; Huang, F.; Chen, W.; Xing, B.; Zhu, L. Environ. Pollu. 2011, 159, 850. https://doi.org/10.1016/j.envpol.2011.01.002
  14. Acevedo, B.; Carmen, B. Fuel Process Technol. 2015, 134, 275. https://doi.org/10.1016/j.fuproc.2015.02.009
  15. Troca-Torrado, C.; Alexandre-Franco, M.; Fernandez Gonzalez, C.; Alfaro-Dominguez, M.; Gomez-Serrano, V. Fuel Process Technol. 2011, 92, 206. https://doi.org/10.1016/j.fuproc.2010.03.007
  16. Gupta, V. K.; Nayak, A.; Agawal, S.; Tyagi, I. J. Colloid Inter. Sci. 2014, 417, 420. https://doi.org/10.1016/j.jcis.2013.11.067
  17. Acosta, R.; Fierro, V.; Martinez de Yuso, A.; Nabarlatz, D.; Celzard, A. Chemosphere 2016, 149, 168. https://doi.org/10.1016/j.chemosphere.2016.01.093
  18. Makrigianni, V.; Giannakas, A.; Deligiannakis, Y.; Konstantinou, I. J. Environ. Chem. Engineer. 2015, 3, 574. https://doi.org/10.1016/j.jece.2015.01.006
  19. Jeong, Y. K.; Min, D. K.; O, H. J. J. Kor. Soil Soc. 1986, 6, 34.
  20. Lee, Y. D.; Ko, D. Y. Environ. Eng. Res. 2007, 29. 357.