DOI QR코드

DOI QR Code

동작기억 및 재생 기능을 이용한 모듈라 로봇의 다양한 동작 구현

Action Realization of Modular Robot Using Memory and Playback of Motion

  • 안기삼 (세명대학교 전기공학과) ;
  • 김지환 (세명대학교 전기공학과) ;
  • 이보희 (세명대학교 전기공학과)
  • Ahn, Ki-Sam (Department of Electrical Engineering, Semyung University) ;
  • Kim, Ji-Hwan (Department of Electrical Engineering, Semyung University) ;
  • Lee, Bo-Hee (Department of Electrical Engineering, Semyung University)
  • 투고 : 2017.11.22
  • 심사 : 2017.12.20
  • 발행 : 2017.12.31

초록

최근 아이들의 창의력 학습 및 놀이에 로봇이 활발하게 이용되고 있지만 대부분 로봇이 정형화된 형태를 가지고 있으며 프로그램의 의존도가 높아 창의력 학습 및 놀이에 어려움이 있다. 우리는 이러한 단점을 보완하기 위해 정형화 되지 않은 모듈 형태의 로봇구조를 가지고 있으면서 결합을 쉽고 안정적으로 할 수 있도록 하였고 하나의 버튼을 이용하여 사용자가 원하는 동작을 기억시키고 기억된 동작을 똑같이 재생하는 로봇을 제작 하였다. 또한 모듈 사이를 무선으로 연결하고 정보를 공유하여 다수의 모듈이 결합 되었을 경우 어느 모듈에서나 버튼을 한번 누르면 결합된 모든 모듈의 동작을 쉽게 조정할 수 있도록 하였다. 실제 동작을 검증하기 위해 두 개, 3개 및 5개의 모듈을 결합하여 자벌레 동작과 보행 로봇을 구현하여 제안된 구조와 알고리즘의 유용성을 보였다. 향 후 무선연결 방법을 보완하여 인터넷상에서 통제할 수 있는 지능화된 모듈라 로봇의 연구가 필요하다.

In recent years, robots have been actively used for children's creativity learning and play, but most robots have a stereotyped form and have a high dependency on the program, making it difficult to learn creativity and play. In order to compensate for these drawbacks, We have created a robot that can easily and reliably combine each other. The robot can memorize the desired operation and execute the memorized operation by using one button. Also, in case multiple modules are combined, pressing the button once on any module makes it possible to easily adjust the operation of all the combined modules. In order to verify the actual operation, two, three, and five modules are combined to demonstrate the usefulness of the proposed structure and algorithm by implementing a gobbling motion and a walking robot. It is required to study intelligent modular robots that can control over the Internet by supplementing the wireless connection method.

키워드

참고문헌

  1. P. Marshall, S. Price & Y. Rogers. (2003). Conceptualising tangibles to support learning. In Proceedings of the 2003 conference on Interaction design and children (pp. 101-109). USA : ACM. DOI : 10.1145/953536.953551
  2. A. Takacs, G. Eigner, L. Kovacs, I. J. Rudas & T. Haidegger. (2016). Teacher's Kit : Development, Usability, and Communities of Modular Robotic Kits for Classroom Education. IEEE Robotics & Automation Magazine, 23(2), 30-39. DOI : 10.1109/MRA.2016.2548754
  3. A. Takacs, J. H. Oh & K. W. Ko. (2011). Combination of 13 kinds of creativity thought tool and robot education. The institute of electronics and information Engineers, 34(1), 1179-1182. DBpia. http://www.dbpia.co.kr/Article/NODE02336902
  4. J. Nielsen, N. K. Baerendsen & C. Jessen. (2008). RoboMusicKids-music education with robotic building blocks. In Digital Games and Intelligent Toys Based Education, 2008 Second IEEE International Conference on (pp. 149-156). USA : IEEE. DOI : 10.1109/DIGITEL.2008.25
  5. H. S. Raffle, H. Ishii & A. B. Lippman. (2004). Topobo : a constructive assembly system with kinetic memory. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 647-654). USA : ACM. DOI : 10.1145/985692.985774
  6. M. M. Santin, S. Botelho, G. Dimuro & C. Rodrigues. (2011). Hand Skill Programming : Using Fuzzy Sets to Program Topobo Kinectis Memory Devices. Workshop-School on Theoretical Computer Science, 67-73. DOI : 10.1109/WEIT.2011.30
  7. E. Schweikardt & M. D. Gross. (2008). Learning about complexity with modular robots. In Digital Games and Intelligent Toys Based Education, 2008 Second IEEE International Conference on (pp. 116-123). USA : IEEE. DOI : 10.1109/DIGITEL.2008.49.
  8. M. Pacheco, M. Moghadam, A. Magnusson, B. Silverman, H. H. Lund & D. J. Christensen. (2013). Fable : Design of a modular robotic playware platform. ICRA, 2013 IEEE International Conference on (pp. 544-550). USA : IEEE. DOI : 10.1109/ICRA.2013.6630627.
  9. J. S. Choi, B. H. Lee & J. G. Kim. (2014) Modular Robot for Promoting Creativity Development in Play and Education. Institute of korean Electrical and Electronics Engineers, 18(4), 572-580. DBpia. http://www.dbpia.co.kr/Article/NODE02336902
  10. H. K. Kim, J. Y. Jen, J. Y. Park, S. H. Yoou & S. S. Na. (2010). Noise reduction of a high-speed printing system using optimized gears based on Taguchi's method. Journal of mechanical science and technology, 24(12), 2383-2393. DOI : 10.1007/s12206-010-0911-5
  11. M. Yim, B. Shirmohammadi & J. Sastra. (2007). Towards Self-reassembly After Explosion. In : Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2767-2772. DOI : 10.1109/iros.2007.4399594