DOI QR코드

DOI QR Code

Temperature-dependent Oviposition Model and Life Table Parameters of Paromius exiguus (Distant) (Hemiptera: Lygaeidae) Growing on Rice

벼에서 흑다리긴노린재 [Paromius exiguus (Distant)] (Hemiptera: Lygaeidae) 산란모델 및 생명표

  • Park, Chang-Gyu (Crop protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences) ;
  • Park, Hong-Hyeon (R&D Coordination Division, Rural Development Administration) ;
  • Seo, Bo Yoon (Crop protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences)
  • 박창규 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 박홍현 (농촌진흥청 연구운영과) ;
  • 서보윤 (국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2017.09.11
  • Accepted : 2017.11.08
  • Published : 2017.12.01

Abstract

Temperature-dependent oviposition model and life table parameters of Paromius exiguus (Distant), the causal agent of 'pecky' rice grain were examined at eight constant temperatures (17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}^{\circ}C$) and a photoperiod of 14:10 (L:D) h. Unit functions of the oviposition model were developed and life table parameters were estimated. The longevity of P. exiguus adults decreased with increasing temperature (123.8 days at $17.5^{\circ}C$ and 23.6 days at $32.5^{\circ}C$). Total fecundity was highest at $30^{\circ}C$ (585.2 eggs/female) and lowest at $17.5^{\circ}C$ (21.5 eggs/female). In order to develop a temperature-dependent oviposition model, adult aging-rate, temperature-dependent fecundity, age-specific survival rate, and age-specific cumulative oviposition rate equations were estimated. All unit equations ($r^2=0.92{\sim}0.98$) except for the temperature-dependent fecundity equation ($r^2=0.83{\sim}0.85$), described oviposition characteristics of P. exiguus adequately. Life table parameters of P. exiguus were estimated at various constant temperatures. Net reproduction rate ($R_0$) was highest at $30^{\circ}C$ (118.21). Mean generation time (T) was shortest at $32.5^{\circ}C$ (32.99 days) and doubling time (Dt) was shortest at $30^{\circ}C$ (5.69 days). The highest values of intrinsic rate of increase ($r_m$) and finite rate of increase (${\lambda}$) were 0.122 and 1.129 at $30^{\circ}C$, respectively.

벼에 반점미를 유발하는 흑다리긴노린재 [Paromius exiguus (Distant)]의 온도에 따른 산란 특성을 $17.5{\sim}35^{\circ}C$ 8개 항온조건 광주기 14L:10D에서 조사하고 산란모델 구축을 위한 단위 함수 개발 및 생명표 분석을 수행하였다. 성충 수명은 $17.5^{\circ}C$에서 123.8일로 가장 길었고, $32.5^{\circ}C$에서 23.6일로 가장 짧았으며 온도가 올라감에 따라 수명도 짧아졌다. 암컷 한 마리당 총산란수는 $30^{\circ}C$에서 585.2개로 가장 많았으며, $17.5^{\circ}C$에서 21.5개로 가장 적었다. 온도에 기반한 산란 모델 개발을 위해 성충노화율, 총산란수, 성충생존율 및 누적산란율 단위모델을 추정하였다. 총 산란수($r^2=0.83{\sim}0.85$)를 제외한 3개의 단위모델 모두에서 높은 수준의 모델 적합성을 보였다($r^2=0.92{\sim}0.98$). 온도에 따른 흑다리긴노린재 생명표 매개변수들을 추정하였다. 순증가율($R_0$)은 $30^{\circ}C$에서 118.21로 가장 높았다. 평균 세대기간(T)은 $32.5^{\circ}C$에서 32.99일로 가장 짧았으며, 개체군 배수기간(Dt)은 $30^{\circ}C$에서 5.69일로 가장 짧았다. 내적자연증가율($r_m$)과 기간증가율(${\lambda}$)은 $30^{\circ}C$에서 가장 커 각각 0.122, 1.129였다.

Keywords

References

  1. Han, E.-J., Choi, B.-R., Lee, J.-H., 2013. Temperature-dependent development models of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Q biotype on three host plants. J. Asia-Pac. Entomol. 16, 5-10. https://doi.org/10.1016/j.aspen.2012.08.006
  2. Jeon, S.-W., Kang, T.-J., Cho, M.-R., Kim, K.-H., Lee, S.G., Kim, J.S., Park, H.W., 2012. Adult longevity and life table analysis of striped fruit fly, Bactrocera scutellata (Hendel) (Diptera: Tephritidae). Korean J. Appl. Entomol. 51, 485-488. https://doi.org/10.5656/KSAE.2012.11.0.058
  3. Kim, D.S., 1999. Population phenology model of the peach fruit moth, Carposina sasakii (Lepidoptera: Carposinidae). 33 p. Ph. D. dissertation. Seoul National University, Suwon, Korea.
  4. Kim, H., Baek, S., Kim, S., Lee, S.Y., Lee, J.H., 2009. Temperature-dependent development and oviposition models of Riptortus clavatus (Thunberg) (Hemiptera: Alydidae). Appl. Entomol. Zool. 44, 513-523.
  5. Kim, S.H., Kim, K.-H., Hwang, C.-Y., Lim, J.-R., Kim, K.-H., Jeon, S.-W., 2014. Life table analysis of the cabbage aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on tah tsai chinese cabbages. Korean J. Appl. Entomol. 53, 449-456. https://doi.org/10.5656/KSAE.2014.11.0.058
  6. Lactin, D.J., Holliday, N.J., Johnson, D.I., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  7. Liu, L.L., Dai, R.H., Yang, H., Jin, D.C., 2016. Sublethal effects of triazophos on the life table parameters of Sogatella furcifera (Hemiptera: Delphacidae). Fla. Entomol. 99, 292-296. https://doi.org/10.1653/024.099.0221
  8. Logan, J.A., Wolkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  9. Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93, 511-518. https://doi.org/10.1603/0022-0493-93.2.511
  10. Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67, 1156-1166. https://doi.org/10.2307/1938671
  11. Neter, J., Wasserman, W., 1974. Applied linear statistical models. regression, analysis of variance, and experimental designs. Ed. R. D. Irwin, Illinois.
  12. Park, C.-G., Choi, B.-R., Cho, J.R. Kim, J.-H., Ahn, J.J., 2017. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia Pac. Entomol. 20, 767-775. https://doi.org/10.1016/j.aspen.2017.05.004
  13. Park, C.-G., Park, H.-H., Uhm, K.-B., Lee, J.-H., 2009. Seasonal occurrence and age structure of Paromius exiguus (Distant) (Heteroptera: Lygaeidae) on major host plants. Korean J. Appl. Entomol. 48, 21-27. https://doi.org/10.5656/KSAE.2009.48.1.021
  14. Park, C.-G., Park, H.-H., Uhm, K.-B., Lee, J.-H., 2010. Temperature-dependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Korean J. Appl. Entomol. 49, 305-312. https://doi.org/10.5656/KSAE.2010.49.4.305
  15. Rostami, E., Madidi, H., Abbasipour, H., Allahyari, H., Cuthbertson, A.G.S., 2017. Life table parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on different tomato cultivars. J. Appl. Entomol. 141, 88-96. https://doi.org/10.1111/jen.12319
  16. SAS Institute. 2002. SAS User's Guide; Statistics Version 9.1ed. SAS Institute. Cary NC.
  17. SYSTAT Software Inc. 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. inc. San Jose, CA.
  18. Takimoto, M., Asayama, T., Isogawa, Y., Nakagome, T., Katou S., Uebayasi. Y., 1989. Ecology and chemical control of Paromius exiguus Distant (Heteroptera: Lygaeidae). Res. Bull. Aichi Agric. Res. Ctr. 21, 69-77.
  19. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling distribution of insect development time: a literature review and application of the Weibull function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  20. Wang, L., Shi, P., Chen, C., Xue, F., 2013. Effect of temperature on the development of Laodelphax striatellus (Homoptera: Delphacidae). J. Econ. Entomol. 106, 107-114. https://doi.org/10.1603/EC12364
  21. Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S., Zalucki, M.P., 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ. Entomol. 39, 177-189. https://doi.org/10.1603/EN08239