DOI QR코드

DOI QR Code

Optimal Duration of Determining the Insecticidal Effect of Carbofuran on Nilaparvata lugens Using Different Application Methods

카보퓨란 처리 방법 별 벼멸구에 대한 살충 효과 판별 최적 시기

  • Received : 2016.11.04
  • Accepted : 2017.11.06
  • Published : 2017.12.01

Abstract

For determining the insecticidal effect of Carbofuran on the Brown planthopper, Nilaparvata lugens, sucking toxicity by drenching application, sucking and contact toxicity by leaf dipping application, and contact toxicity by topical application were examined. Drenching caused two types of mortality patterns. One was logarithmic curve at a relatively high concentration (8~30 ppm) with over 40% mortality in 24 h, and the other was an S-shaped curve at low concentrations (1~4 ppm) with over 60% mortality on the fifth day after Carbofuran treatment. Leaf dipping application caused a rapid increase in mortality in a day, and this effect decreased steadily with time. Topical application showed steep increase in mortality in a day, and hardly increased thereafter. The best mortality evaluation time for the drenching application was the second day (42 h), and that for the leaf dipping and topical applications was the first or second day after Carbofuran application. When the insecticide has systemic effects, drench application provides the best efficacy and its insecticidal effects persist for a longer time than any other application method.

관주처리에 의한 벼멸구 흡즙 섭식 독성, 잎 침지처리에 의한 접촉독성과 식물체내 침투에 의한 섭식독성, 미량국소처리에 의한 표피 접촉 독성 등, 처리 방법에 따른 카보퓨란의 벼멸구에 대한 살충 작용 특성을 분석하였다. 카보퓨란 관주처리는 시간에 따른 벼멸구의 살충력 변화가 2가지 패턴으로 나타났다. 상대적으로 높은 농도(8~30 ppm)의 처리에서는 급격히 사충율이 올라가다가 시간이 지남에 따라 증가율이 낮아지는 로그곡선의 형태와 낮은 농도(1~4 ppm)의 처리에서는 사충율 증가 패턴이 S 자 모양의 곡선 형태를 보였다. 관주처리 시 높은 농도에서는 처리효과가 즉시 나타나 하루 만에 치사율이 40% 이상 도달하였으나 상대적으로 낮은 1~2 ppm의 농도에서는 처리 5일 후에야 80~100%에 달하는 사충율을 얻을 수 있었다. 침지처리는 사충율이 처리 1일 후 약효가 급격히 증가하고 이 후 증가율이 낮아졌다. 국소처리도 침지처리와 비슷한 경향을 보이나 침지처리와는 달리 처리 후 3일 이후에는 사충율이 거의 증가하지 않았다. 약효 최적 조사 시간은 관주처리에서 처리 후 2일 (42시간)이었으며 침지처리와 국소처리에서는 처리 후 1~2일이 약효 조사 적기였다.

Keywords

References

  1. Aquino, G.B., Pathak, M.D., 1976. Enhanced absorption and persistence of Carbofuran and Chlorodimeform in rice plant on root zone application under flooded conditions. J. Econ. Entomol. 69, 686-690. https://doi.org/10.1093/jee/69.5.686
  2. Bae, Y.H., Hyun, J.S., 1987. Studies on the effects of systematic applications of several insecticides on the population of the Brown planthopper, Nilaparvatia lugens Stal. I. Effects of some systemic insecticides of the early population. Korean J. Plant Prot. 26, 9-12.
  3. Bae, Y.H., Lee, J.H., Hyun, J.S., 1992. Effects of Carbofuran soil incorporation on the early occurring rice insect pests and the Brown planthopper. Korean J. Appl. Entomol. 31, 536-542.
  4. Bao, H. B., Liu, S. H., Gu, J. H., Wang, X. Z., Liang, X. L., Liu, Z. W., 2009. Sublethal effects of four insecticides on the reproduction and wing formation of Brown planthopper, Nilaparvata lugens. Pest Manag. Sci. 65, 170-174. https://doi.org/10.1002/ps.1664
  5. Bautista, M.V., Bautista, A., Cruz, A.H., 1979. Soil incorporated Carbofuran for control of Rice whorl maggot and early Stem borers. Int. Rice Res. Newsl. 4(4), 15-16.
  6. Chang, C., Cheng, X., Huang, X.Y., Dai, S.M., 2014. Amino acid substitutions of acetylcholinesterase associated with Carbofuran resistance in Chilo suppressalis. Pest Manag. Sci. 70, 1930-1935. https://doi.org/10.1002/ps.3770
  7. Davis, A.R., Shuel, R.W., 1988. Distribution of 14c-labelled Carbofuran and Dimethoate in royal jelly, queen larvae and nurse honeybees. Apidologie 19, 37-50. https://doi.org/10.1051/apido:19880103
  8. DiSanzo, C.P., 1981. Effect of foliar application of Carbofuran and a related compound on plant-parasitic nematodes under greenhouse and growth chamber conditions. J. Nematol. 13, 20-24.
  9. Dosono-Lopez, J.G., Grigarick, A.A., 1969. An evaluation of Carbofuran for control of several stages of the Rice water weevil in greenhouse tests. J. Econ. Entomol. 62, 1024-1028.
  10. EPA (U.S. Environmental Protection Agency), N.D. Carbofuran I.R.E.D. Facts. https://archive.epa.gov/pesticides/reregistration/web/html/Carbofuran_ired_fs.html (accessed on 5 October, 2016).
  11. Fukuto, T.R., 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245-254. https://doi.org/10.1289/ehp.9087245
  12. Gupta, R.C., 1994. Carbofuran toxicity. J. Toxicol. Environ. Health 43, 383-418. https://doi.org/10.1080/15287399409531931
  13. He, Y., Zhao, J., Wu, D., Wyckhuys, K.A.G., Wu, K., 2011. Sublethal effects of Imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae) under laboratory conditions. J. Econ. Entomol. 104, 833-838. https://doi.org/10.1603/EC10281
  14. He, Y., Zhao, J., Zheng, Y., Weng, Q., Biondi, A., Desneux, N. Wu, K., 2013. Assessment of potential sublethal effects of various insecticides on key biological traits of the Tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 9, 246-255. https://doi.org/10.7150/ijbs.5762
  15. IUPAC (International Union of Pure and Applied Chemistry), N.D. Page about Carbofuran in the IUPAC's database. http://sitem.herts.ac.uk/aeru/iupac/Reports/118.htm (accessed on 6 October, 2016).
  16. Jiang, W., Wang, Z., Xiong, M., Lu, W., Liu, P., Guo, W., Li, G., 2010. Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur autonomous region. J. Econ. Entomol. 103, 1365-1371. https://doi.org/10.1603/EC10031
  17. Jotwani, M.G., Kishore, P., Sukhani, T.R., Srivastava, K.P., 1979. Relative efficacy of Carbofuran seed treatment and granular formulation of systemic insecticides for the control of Sorghum shootfly. Pesticides 13, 40-43.
  18. Kolbezen, M.J., Metcalf, R.L. Fukuto, T.R., 1954. Insecticide structure and activity, insecticidal activity of carbamate cholinesterase inhibitors. J. Agric. Food Chem. 2, 864-870. https://doi.org/10.1021/jf60037a003
  19. Korea Crop Protection Association (KCPA), 2012. Agrochemical Year Book 2012. Seoul.
  20. Korea Crop Protection Association (KCPA), 2014a. Agrochemical Year Book 2014. Seoul.
  21. Korea Crop Protection Association (KCPA). 2014b. Agrochemicals Use Guide Book 2014. Seoul.
  22. Korea Evaluation Institute of Industrial Tecahnology (KEIT), 2015. For global marketing of eco-friendly crop protection agents by new materials. KEIT PD Issue Report. November. 15-11, 45-56.
  23. Liu, G.Y., Miao, W., Ju, X.L., 2010. Mechanisms of Imidacloprid resistance in Nilaparvata lugens by molecular modeling. Chin. Chem. Lett. 21, 492-495. https://doi.org/10.1016/j.cclet.2009.12.017
  24. Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S., 2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to Imidacloprid in Nilaparvata lugens (Brown planthopper). Proc. Natl. Acad. Sci. USA 102, 8420-8425. https://doi.org/10.1073/pnas.0502901102
  25. Nauen, R., Elbert, A., 1997. Apparent tolerance of a field-collected strain of Myzus nicotianae to Imidacloprid due to strong antifeeding response. Pestic. Sci. 49, 252-258. https://doi.org/10.1002/(SICI)1096-9063(199703)49:3<252::AID-PS521>3.0.CO;2-2
  26. Nauen, R., Koob, B., Elbert, A., 1998. Antifeedant effects of sublethal dosages of Imidacloprid on Bemisia tabaci. Entomol. Exp. Appl. 88, 287-293. https://doi.org/10.1046/j.1570-7458.1998.00373.x
  27. Nelson, L. R., Morrill, W.L., 1975. Hessian fly control in wheat with systemic insecticides. Cereal Res. Commun. 3, 7-14.
  28. Pham, H.H., Kim, J.K., Choi, B.R., Song, Y.H., 2008. Effects of root zone applications of some systemic lnsecticides for control of the Brown planthopper, Nilaparvata lugens (Stal). Korean J. Pestic. Sci. 12, 236-242.
  29. Podolska, M., Mulkiewicz, E., Napierska, D., 2008. The impact of Carbofuran on acetylcholinesterase activity in Anisakis simplex larvae from Baltic herring. Pestic. Biochem. Physiol. 91, 104-109. https://doi.org/10.1016/j.pestbp.2008.01.008
  30. Risher, J.F., Mink, F.L., Stara, J.F., 1987. The toxicologic effects of the carbamate insecticide Aldicarb in mammals: A Rev. Environ. Health Perspect. 72, 267-281. https://doi.org/10.1289/ehp.8772267
  31. Salman, J.M., 2013. Batch study for insecticide Carbofuran adsorption onto palm-oil-fronds-activated carbon. J. Chem. 2013, 1-5.
  32. Shim, M.J., 2015. Necessary of policy for export drive of agricultural chemicals. http://www.newsam.co.kr/news/article.html?no=7859 (accessed on 11 October, 2016).
  33. Shukla, V.D., Anjaneyulu, A., 1980. Evaluation of systemic insecticides for control of rice Tungro. Plant Disease. 64, 790-792. https://doi.org/10.1094/PD-64-790
  34. Sikora, R. A., Hartw, J., 1991. Mode-of-action of the carbamate nematicides Cloethocarb, Aldicarb and Carbofuran on Heterodera schachtii. 2. Systemic activity. Rev. Nematol. 14, 531-536.
  35. Simon-Delso N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R., Wiemers, M., 2015. Systemic insecticides (Neonicotinoids and Fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5-34. https://doi.org/10.1007/s11356-014-3470-y
  36. Solheim, B.A., 1982. Toxicity and acetylcholinesterase inhibition by Carbofuran and Terbufos insecticides on Diabrotica species (Insecta: Coleoptera: Chrysomelidae), Iowa State University Ph.D., Retrospective Theses and Dissertations. Paper No. 7542.
  37. Stenersen, J., 2004. Chemical pesticides mode of action and toxicology. CRC Press, Boca Raton, Florida.
  38. Wise, J.C., Vandervoort, C., Isaacs, R., 2007. Lethal and sublethal activities of Imidacloprid contribute to control of adult Japanese beetle in blueberries. J. Econ. Entomol. 100, 1596-1603. https://doi.org/10.1093/jee/100.5.1596
  39. Yen, J.H., Hsiao, F.L., Wang, Y.S., 1997. Assessment of the insecticide Carbofuran's potential to contaminate groundwater through soils in the subtropics. Ecotoxicol. Environ. Saf. 38, 260-265. https://doi.org/10.1006/eesa.1997.1587