DOI QR코드

DOI QR Code

Fabrication of Stretchable Transparent Electrodes

  • Oh, Jong Sik (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Yeom, Geun Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2017.07.18
  • Accepted : 2017.10.23
  • Published : 2017.11.30

Abstract

Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.

Keywords

References

  1. Y. Huang, L. Gao, Y. N. Zhao, X. H. Guo, C. X. Liu, and P. Liu, Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition. J Appl Polym Sci 2017, 134(39).
  2. B. G. Zhuo, S. J. Chen, M. M. Zhao, and X. J. Guo, High Sensitivity Flexible Capacitive Pressure Sensor Using Polydimethylsiloxane Elastomer Dielectric Layer Micro-Structured by 3-D Printed Mold. Ieee J Electron Devi 2017, 5(3), 219-223. https://doi.org/10.1109/JEDS.2017.2683558
  3. Y. C. Zhao and X. Huang, Mechanisms and Materials of Flexible and Stretchable Skin Sensors. Micromachines-Basel 2017, 8(3).
  4. X. Q. Zhang, X. X. Huang, L. Xia, B. Zhong, X. D. Zhang, T. Zhang, and G. W. Wen, Facile synthesis of flexible and free-standing cotton covered by graphene/MoO2 for lithium-ions batteries. Ceram Int 2017, 43(6), 4753-4760. https://doi.org/10.1016/j.ceramint.2016.11.117
  5. P. Zhang, H. Z. Zhang, C. Yan, Z. J. Zheng, and Y. Yu, Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors. Mater Res Express 2017, 4(7).
  6. X. G. Yu, Y. Q. Li, W. B. Zhu, P. Huang, T. T. Wang, N. Hu, and S. Y. Fu, A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 2017, 9(20), 6680-6685. https://doi.org/10.1039/C7NR01011G
  7. B. You, Y. Kim, B. K. Ju, and J. W. Kim, Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. Acs Appl Mater Inter 2017, 9(6), 5486-5494. https://doi.org/10.1021/acsami.6b14535
  8. K. Kim, J. Kim, B. G. Hyun, S. Ji, S. Y. Kim, S. Kim, B. W. An, and J. U. Park, Stretchable and transparent electrodes based on inplane structures. Nanoscale 2015, 7(35), 14577-14594. https://doi.org/10.1039/C5NR04341G
  9. K. Kim, B. G. Hyun, J. Jang, E. Cho, Y. G. Park, and J. U. Park, Nanomaterial-based stretchable and transparent electrodes. J Inf Disp 2016, 17(4), 131-141. https://doi.org/10.1080/15980316.2016.1240111
  10. S. Jang, W. B. Jung, C. Kim, P. Won, S. G. Lee, K. M. Cho, M. L. Jin, C. J. An, H. J. Jeon, S. H. Ko, T. S. Kim, and H. T. Jung, A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale 2016, 8(29), 14257-14263. https://doi.org/10.1039/C6NR03060B
  11. T. Bocksrocker, N. Hulsmann, C. Eschenbaum, A. Pargner, S. Hofle, F. Maier-Flaig, and U. Lemmer, Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil. Thin Solid Films 2013, 542, 306-309. https://doi.org/10.1016/j.tsf.2013.06.090
  12. J. S. Oh, J. S. Oh, J. H. Shin, G. Y. Yeom, and K. N. Kim, Nano-Welding of Ag Nanowires Using Rapid Thermal Annealing for Transparent Conductive Films. J Nanosci Nanotechno 2015, 15(11), 8647-8651. https://doi.org/10.1166/jnn.2015.11509
  13. H. T. Zhai, R. R. Wang, X. Wang, Y. Cheng, L. J. Shi, and J. Sun, Transparent heaters based on highly stable Cu nanowire films. Nano Res 2016, 9 (12), 3924-3936. https://doi.org/10.1007/s12274-016-1261-0
  14. X. M. Xu, S. He, C. H. Zhou, X. D. Xia, L. Xu, H. Chen, B. C. Yang, and J. L. Yang, Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks. Rsc Adv 2016, 6(107), 105895-105902. https://doi.org/10.1039/C6RA20147D
  15. M. X. Song, X. He, C. Z. Zhang, M. D. Chen, C. J. Huang, F. H. Chen, and H. Qiu, Solvothermal fabrication of thin Ag nanowires assisted with AAO. Rsc Adv 2016, 6 (85), 82238-82243. https://doi.org/10.1039/C6RA17688G
  16. S. Pirsalami, S. M. Zebarjad, and H. Daneshmanesh, An Overview of Metallic Nanowire Networks, Promising Building Blocks for Next Generation Transparent Conductors: Emergence, Fundamentals and Challenges. J Electron Mater 2017, 46(8), 4707-4715. https://doi.org/10.1007/s11664-017-5467-z
  17. J. T. Jiu and K. Suganuma, Metallic Nanowires and Their Application. Ieee T Comp Pack Man 2016, 6(12), 1733-1751.
  18. Y. Kim, S. Jun, B. K. Ju, and J. W. Kim, Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. Acs Appl Mater Inter 2017, 9(8), 7505-7514. https://doi.org/10.1021/acsami.6b11853
  19. D. H. Kim, K. C. Yu, Y. Kim, and J. W. Kim, Highly Stretchable and Mechanically Stable Transparent Electrode Based on Composite of Silver Nanowires and Polyurethane-Urea. Acs Appl Mater Inter 2015, 7(28), 15214-15222. https://doi.org/10.1021/acsami.5b04693
  20. T. Y. Choi, B. U. Hwang, B. Y. Kim, T. Q. Trung, Y. H. Nam, D. N. Kim, K. Eom, and N. E. Lee, Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. Acs Appl Mater Inter 2017, 9(21), 18022-18030. https://doi.org/10.1021/acsami.6b16716
  21. H. S. Liu, B. C. Pan, and G. S. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 2017, 9(7), 2633-2639. https://doi.org/10.1039/C6NR09220A
  22. C. Hwang, J. An, B. D. Choi, K. Kim, S. W. Jung, K. J. Baeg, M. G. Kim, K. M. Ok, and J. Hong, Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J Mater Chem C 2016, 4(7), 1441-1447. https://doi.org/10.1039/C5TC03614C
  23. G. Heo, K. H. Pyo, D. H. Lee, Y. Kim, and J. W. Kim, Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer. Sci Rep-Uk 2016, 6.
  24. C. F. Guo, Y. Chen, L. Tang, F. Wang, and Z. F. Ren, Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. Nano Letters 2016, 16(1), 594-600. https://doi.org/10.1021/acs.nanolett.5b04290
  25. T. Araki, R. Mandamparambil, D. M. P. van Bragt, J. Jiu, H. Koga, J. van den Brand, T. Sekitani, den J. M. J. Toonder, and K. Suganuma, Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology 2016, 27(45).
  26. J. B. Pyo, B. S. Kim, H. Park, T. A. Kim, C. M. Koo, J. Lee, J. G. Son, S. S. Lee, and J. H. Park, Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale 2015, 7(39), 16434-16441. https://doi.org/10.1039/C5NR03814F
  27. C. F. Guo, T. Y. Sun, Q. H. Liu, Z. G. Suo, and Z. F. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 2014, 5.
  28. T. Cheng, Y. Z. Zhang, W. Y. Lai, Y. Chen, W. J. Zeng, and W. Huang, High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J Mater Chem C 2014, 2(48), 10369-10376. https://doi.org/10.1039/C4TC01959H
  29. W. L. Hu, X. F. Niu, L. Li, S. R. Yun, Z. B. Yu, amd Q. B. Pei, Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23(34).
  30. H. Yabu, K. Nagamine, J. Kamei, Y. Saito, T. Okabe, T. Shimazaki, and M. Nishizawa, Stretchable, transparent and molecular permeable honeycomb electrodes and their hydrogel hybrids prepared by the breath figure method and sputtering of metals. Rsc Adv 2015, 5(107), 88414-88418. https://doi.org/10.1039/C5RA18063E
  31. H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes. Chem Mater 2013, 25 (17), 3535-3538. https://doi.org/10.1021/cm402085k
  32. M. Y. Teo, N. Kim, S. Kee, B. S. Kim, G. Kim, S. Hong, S. Jung, and K. Lee, Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. Acs Appl Mater Inter 2017, 9(1), 819-826. https://doi.org/10.1021/acsami.6b11988
  33. J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanicallyrobust organic solar cells. Sol Energ Mat Sol C 2013, 110, 98-106. https://doi.org/10.1016/j.solmat.2012.09.005
  34. R. J. Li, K. Parvez, F. Hinkel, X. L. Feng, and K. Mullen, va Bioinspired Wafer-Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angew Chem Int Edit 2013, 52(21), 5535-5538. https://doi.org/10.1002/anie.201300312
  35. M. Vosgueritchian, D. J. Lipomi, and Z. A. Bao, Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv Funct Mater 2012, 22(2), 421-428. https://doi.org/10.1002/adfm.201101775
  36. Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn, and N. E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J Mater Chem 2012, 22(45), 23759-23766. https://doi.org/10.1039/c2jm33949h
  37. Q. X. Fan, Q. Zhang, W. B. Zhou, F. Yang, N. Zhang, S. Q. Xiao, X. G. Gu, Z. J. Xiao, H. L. Chen, Y. C. Wang, H. P. Liu, and W. Y. Zhou, Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells. Chinese Phys B 2017, 26(2).
  38. J. H. Liu, Y. H. Yi, Y. H. Zhou, and H. F. Cai, Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode. Nanoscale Res Lett 2016, 11.
  39. J. Y. Hong, W. Kim, D. Cho, J. Kong, and H. S. Park, Omnidirectionally Stretchable and Transparent Graphene Electrodes. Acs Nano 2016, 10(10), 9446-9455. https://doi.org/10.1021/acsnano.6b04493
  40. S. Ahn, A. Choe, J. Park, H. Kim, J. G. Son, S. S. Lee, M. Park, and H. Ko, Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. J Mater Chem C 2015, 3(10), 2319-2325. https://doi.org/10.1039/C4TC02733G
  41. S. Won, Y. Hwangbo, S. K. Lee, K. S. Kim, K. S. Kim, S. M. Lee, H. J. Lee, J. H. Ahn, J. H. Kim, and S. B. Lee, Double-layer CVD graphene as stretchable transparent electrodes. Nanoscale 2014, 6(11), 6057-6064. https://doi.org/10.1039/C4NR00265B
  42. T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. Acs Nano 2014, 8(1), 1039-1046. https://doi.org/10.1021/nn405939w
  43. B. W. An, B. G. Hyun, S. Y. Kim, M. Kim, M. S. Lee, K. Lee, J. B. Koo, H. Y. Chu, B. S. Bae, and J. U. Park, Stretchable and Transparent Electrodes using Hybrid Structures of Graphene-Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters 2014, 14(11), 6322-6328. https://doi.org/10.1021/nl502755y
  44. M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures. Nano Letters 2013, 13(6), 2814-2821. https://doi.org/10.1021/nl401070p
  45. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  46. A. K. Geim and K. S. Novoselov, The rise of graphene. Nature materials 2007, 6(3), 183-191. https://doi.org/10.1038/nmat1849
  47. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8(3), 902-907. https://doi.org/10.1021/nl0731872
  48. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 2008, 3(9), 538-542. https://doi.org/10.1038/nnano.2008.210
  49. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors. Nano letters 2008, 8(10), 3498-3502. https://doi.org/10.1021/nl802558y