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Abstract: We present a new method for solving an inverse problem of flux emergence which transports
subsurface magnetic flux from an inaccessible interior to the surface where magnetic structures may be
observed to form, such as solar active regions. To make a quantitative evaluation of magnetic structures
having various characteristics, we derive physical properties of subsurface magnetic field that characterize
those structures formed through flux emergence. The derivation is performed by inversion from an evo-
lutionary relation between two observables obtained at the surface, emerged magnetic flux and injected
magnetic helicity, the former of which provides scale information while the latter represents the configu-
ration of magnetic field.
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1. INTRODUCTION

We consider magnetic fields rising via magnetic buoy-
ancy (Parker 1955) through a gravitationally bound re-
gion filled with a dense plasma. The region is divided
into an interior and surface, the latter behaving like
a nearly impermeable boundary toward radiative flux,
so it is difficult to directly observe subsurface magnetic
field in electromagnetic waves. On the other hand, be-
cause of its divergence-free nature, magnetic flux is con-
tinuous across the surface. Thus physical properties of
subsurface magnetic field determine the characteristics
of magnetic structures formed on the surface, such as so-
lar active regions producing flares and/or coronal mass
ejections (Low 1996; Priest & Forbes 2002; Kliem &
Török 2006; Shibata & Magara 2011). A key question
is therefore how physical properties of subsurface mag-
netic field may be derived from observations of surface
magnetic field.

The subsurface magnetic field surrounded by a con-
vecting hot and dense plasma is suggested to have the
shape of a thin magnetic flux tube with some twist
(Moreno-Insertis & Emonet 1996; Fan 2009). To derive
physical properties of the subsurface magnetic field, we
construct a model for the emergence of a cylindrical
flux tube, as illustrated in Figure 1a. Here we use the
Cartesian coordinates (X,Y, Z), in which the Y - and Z-
axes determine the axial direction of flux tube and the
vertical direction, respectively, while the (X,Y )-plane
at Z = 0 represents the surface into which the sub-
surface magnetic field emerges. R is the radius of flux
tube, while L is defined as the emergence length and
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h is the emergence height measured from the surface,
taking values between 0 and 2R. w ≡ 2

√
(2R− h)h

is the emergence width. The top-left panel shows that
the axis field line (thick black line) is below the surface
(Phase I; 0 ≤ h ≤ R), while it emerges above the sur-
face at the top-right panel (Phase II; R < h ≤ 2R).
Figure 1b shows a magnetic structure formed dynam-
ically through flux emergence at Phase I (left panel)
and Phase II (right panel), which is obtained from a
magnetohydrodynamic (MHD) simulation for solving
a forward problem of flux emergence: how the time
evolution of surface magnetic field is determined when
physical properties of subsurface magnetic field are as-
sumed (Magara 2012). The aim of this paper is to use
an inversion method and derive physical properties of
the subsurface magnetic field from the time evolution
of surface magnetic field, and compare these properties
with those assumed in the simulation so as to show how
well the inversion works.

2. EVOLUTION OF SURFACE MAGNETIC FIELD

To represent the evolution of surface magnetic field, we
focus on two quantities. One of them is emerged mag-
netic flux, which is classified into unsigned magnetic
flux passing through the (X,Y )-plane, and signed mag-
netic flux passing through the (X,Z)-plane above the
(X,Y )-plane. While the latter represents net emerged
magnetic flux, the former counts the number of times
that a single magnetic field line passes through the
(X,Y )-plane, as shown by the green helices in Figure
1a. To distinguish them, the former is called appar-
ent emerged magnetic flux ΦA

emg and the latter is net
emerged magnetic flux ΦN

emg. The apparent emerged
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flux is solely given by the azimuthal magnetic flux of a
cylindrical flux tube at Phase I:

ΦA
emg(Phase I) = Φaz(h) (1)

where

Φaz(h) ≡
∫ w/2

−w/2

|BZ(X,h)| dX
∫ L/2

−L/2

dY . (2)

Here BZ(X,h) gives the distribution of azimuthal flux
through the (X,Y )-plane, represented by the red-blue
maps in Figure 1a. At Phase II the apparent emerged
flux is obtained by adding the azimuthal flux defined
by Equation (2) to the axial magnetic flux ΦD

ax con-
tained in the detached portion of flux tube indicated
by the yellow cylinder at the top-right panel of Figure
1a. This axial flux and the axis field line eventually
pass through the (X,Y )-plane, as shown by the yellow
and black dashed curves. Namely,

ΦA
emg(Phase II) = Φaz(h) + 2 |ΦD

ax(h)|, (3)

where ΦD
ax(h) is the detached axial flux defined as

ΦD
ax(h) ≡

∫∫
X2+(Z−rD)2≤rD2

BY (X,Z, h) dX dZ, (4)

where rD = h − R > 0 (see the bottom-right panel of
Figure 1a). Here BY (X,Z, h) gives the distribution of
axial flux through the (X,Z)-plane. The factor 2 in
front of the detached axial flux in Equation (3) comes
from the fact that after emergence the axial field lines
become curved and pass through the (X,Y )-plane at
two regions indicated by the yellow dashed curves. On
the other hand, the net emerged flux is always given by
the axial flux above the (X,Y )-plane:

ΦN
emg(Phases I, II) =

∫∫
Z≥0

BY (X,Z, h) dX dZ. (5)

The other quantity representing the evolution of
surface magnetic field is the magnetic helicity injected
across the (X,Y )-plane as flux emergence proceeds.
Here we use the relative magnetic helicity introduced
by Berger & Field (1984), which can be uniquely deter-
mined in a volume with magnetic flux passing through
a surface surrounding that volume, while it keeps gauge
invariant (Finn & Antonsen 1985). In the present
model, we estimate the amount of injected magnetic he-
licity by calculating the relative magnetic helicity con-
tained in the emerged portion of flux tube:

Hm(Phases I, II) =

∫ ΦN
emg

0

b

2π2
Φax dΦax

∫ L/2

−L/2

dY ,

(6)
where Φax is the axial flux described in Priest & Forbes
(2000) and ΦN

emg is given by Equation (5). Here b ≡
2π/l represents the twist of a field line making one he-
lical turn around the axis of flux tube over the distance

l. We use b as one of the parameters characterizing the
subsurface magnetic field. In this case, a possible func-
tion form of subsurface magnetic field may be given by
B = B0(b0 r θ̂ + ẑ)/(1 + b0

2 r2), where ẑ and θ̂ deter-
mine the axial and azimuthal directions of a cylindri-
cal flux tube, while r, B0, and b0 represent the radial
distance from the axis of flux tube (0 ≤ r ≤ R), the
strength of magnetic field at the axis of flux tube, and
the value of uniform twist, respectively. This is the so-
called Gold-Hoyle flux tube (Gold & Hoyle 1960), gen-
erating a family of flux tubes with two extremes, one of
which is composed of straight field lines (b0 = 0) while
the other is composed of almost ring-like field lines ex-
cept at the axis of flux tube (|b0| → ∞). In the present
model, (R, B0, b0) are parameters representing physical
properties of subsurface magnetic field.

Next, we consider the quantitative representation
of a time-dependent process of flux emergence. In
the present model, this is conducted by introducing
two time-dependent functions, h = h(t), L = L(t),
where t is time. These functions suggest that the emer-
gence height is expressed as a function of the emergence
length, h = fef(L), where fef means flux-emergence
function. We use the following flux-emergence function
with three characteristic parameters:

fef(L) = hmax sin

[
π

2

(
L

Lmax

)δ
]
, (7)

where hmax and Lmax are the maximum values of
the emergence height and length, while δ > 0 is
a parameter that controls how flux emergence pro-
ceeds. Figure 2a shows three flux-emergence func-
tions corresponding to half-emergence (hmax, Lmax, δ)
= (R, 15R, 1), intermediate-emergence (1.5R, 15R, 2),
and full-emergence (2R, 15R, 0.5) cases, represented by
black, blue and red curves, respectively. When δ takes a
smaller value, flux emergence proceeds more rapidly at
an early phase and then it becomes saturated, leading
toward a relatively long late phase.

A set of the six parameters (R, B0, b0, hmax, Lmax,
δ) quantitatively characterizes the emergence of sub-
surface magnetic field in such a way that it determines
the evolutionary path of a magnetic structure formed
through flux emergence. To show this, we start by ex-
pressing the distributions of azimuthal and axial flux
through the (X,Y ) and (X,Z)-planes, provided by a
Gold-Hoyle flux tube:

BZ(X,h) = −B0
b0 X

1 + b20 [X2 + (R− h)
2
]
, (8)

and

BY (X,Z, h) = B0
1

1 + b20 [X2 + (Z − h+R)
2
]
. (9)

By substitute Equation (8) into Equation (2), we obtain

Φaz(h) =
B0 L

|b0|
ln

[
1 + b20 R2

1 + b20 (R− h)
2

]
. (10)
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Figure 1. a): A model for the emergence of a cylindrical flux tube is schematically illustrated. At top-left panel, the axis field
line of flux tube (thick black line) is below the (X,Y )-plane (Phase I), while it is above that plane at top-right panel (Phase
II). At these panels, the green helix represents a helical field line surrounding the axis field line, while the blue-and-red map
shows the distribution of azimuthal magnetic flux through the (X,Y )-plane. The yellow cylinder at top-right panel indicates
the detached portion of flux tube, and axial magnetic flux and the axis field line contained in this portion eventually pass
through the (X,Y )-plane, as shown by the yellow and black dashed curves. The cross section of flux tube in the (X,Z)-plane
is presented at bottom-left and right panels. h, L, w are the emergence height, length, width, normalized by the flux-tube
radius R. b): Snapshots of a magnetic structure obtained from MHD simulation of flux emergence are presented at left
(Phase I) and right (Phase II) panels, where left-handed twist is initially applied to subsurface magnetic field (Magara 2012).
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Figure 2. a): Graphs of three flux-emergence functions
are drawn in black for half-emergence (hmax, Lmax, δ)
= (R, 15R, 1), blue for intermediate-emergence
(1.5R, 15R, 2), and red for full-emergence (2R, 15R, 0.5)
cases. b): Evolutionary paths based on these three
flux-emergence functions are presented, showing the vari-
ation in injected magnetic helicity with apparent (solid
curves) and net (dashed curves) emerged magnetic flux.
Φ0 = πB0b

−2
0 ln

(
1 + b20 R2

)
, H0 = (2π)−1b0 Φ2

0 Lmax, and
b0 = 1/R.

Also, by substituting Equation (9) into Equation (4),
we obtain

|ΦD
ax(h)| =

π B0

b20
ln

[
1 + b20 (R− h)

2
]
. (11)

The apparent emerged flux is obtained by substitut-
ing Equation (10) into Equation (1) for Phase I, and
by substituting Equation (10) and Equation (11) into
Equation (3) for Phase II:

ΦA
emg(Phase I) =

B0 L

|b0|
ln

[
1 + b20 R2

1 + b20 (R− h)
2

]
, (12)

and

ΦA
emg(Phase II) =

B0 L

|b0|
ln

 1 + b20 R2{
1 + b20 (R− h)

2
}1− 2π

|b0| L

 .

(13)
To calculate the net emerged flux, we introduce the an-
gle θh ≡ arcsin (|1− h/R|) which takes values between
0 and π/2, as shown by the bottom panels of Figure
1a. The net emerged flux at Phases I and II is then
expressed as follows:

ΦN
emg(Phase I) =

∫ π−θh

θh

dθ

∫ R

R−H
sin θ

r Bz(r) dr, (14)

and

ΦN
emg(Phase II) = Φ0 − ΦN

emg(Phase I), (15)

where Bz(r) = B0(1 + b20 r2)−1 and Φ0 =
πB0b

−2
0 ln

(
1 + b20 R2

)
are the axial magnetic field and

the total net magnetic flux of a Gold-Hoyle flux tube.
By substituting these into Equation (14) and Equation
(15), we obtain

ΦN
emg(Phase I) =

B0

2b20
×[

(π − 2θh) ln
(
1 + b20 R2

)
−
∫ π−θh

θh

Θ(θ) dθ

]
,(16)

and

ΦN
emg(Phase II) =

B0

2b20
×[

(π + 2θh) ln
(
1 + b20 R2

)
+

∫ π−θh

θh

Θ(θ) dθ

]
,(17)

where

Θ(θ) = ln

[
1 +

b20 (R− h)
2

sin2θ

]
. (18)

Finally, by substituting Equation (16) and Equation
(17) into Equation (6), we obtain the injected magnetic
helicity at Phases I and II:

Hm(Phase I) =
B2

0 L

4b30
×[

(π − 2 θh)
{
ln
(
1 + b20 R2

)}2 −
∫ π−θh

θh

Θ2(θ) dθ

]
, (19)

and

Hm(Phase II) =
B2

0 L

4b30
×[

(π + 2 θh)
{
ln
(
1 + b20 R2

)}2
+

∫ π−θh

θh

Θ2(θ) dθ

]
. (20)

By recalling that h = fef(L), ΦA
emg, ΦN

emg, and
Hm are expressed as functions of L, which defines a
curve in (Φemg,Hm)-space. Since L is a variable in-
creasing as flux emergence proceeds, the curve repre-
sents the evolutionary path of a magnetic structure
formed through flux emergence. Figure 2b shows evolu-
tionary paths based on the three flux-emergence func-
tions presented in Figure 2a. In the full-emergence
case (red curves), ΦA

emg is eventually equal to 2ΦN
emg

or 2Φ0, because no azimuthal flux passes through the
(X,Y )-plane and only the axial flux contributes to pro-
ducing ΦA

emg. In this case, Hm reaches the maximum
H0 = (2π)−1b0 Φ2

0 Lmax.



Inversion Method For Solar Magnetism 183

Lmaxfit
 = 67.4 = 31.2 R

fit

hmaxfit
 = 3.41 = 1.58 R

fit

L
fit

 = 42.5 = 19.7 R
fit

h
fit

 = 3.29 = 1.52 R
fit

R
fit

 = 2.16 B0fit
 = 20

b0fit
 = – 3.54 δ

fit
 = 0.4

Φemgsim

N
= 0.557 Φ0

h
fit

 = 2.79 = 1.29 R
fit

Φemgsim

N
= 0.889 Φ0

L
fit

 = 19.5 = 9.05 R
fit

Figure 3. Data points (simulation) and a fitting curve (in-
version) are presented in (ΦA

emg, Hm)-space, which are drawn
in black and gray, respectively. + and ∗ indicate a half-
emergence state and the state shown by right panel of Figure
1b.

3. RESULT

Let us demonstrate the inversion process of deriving
physical properties of subsurface magnetic field from
an evolutionary relation between two observables, Hm

and ΦA
emg. Here we only consider the apparent emerged

flux because the net emerged flux is not directly ob-
served. Figure 3 shows data points in (ΦA

emg,Hm)-
space, which are obtained from the MHD simulation
mentioned above. The first and last data points cor-
respond to the left and right panels of Figure 1b. A
curve fitting is then applied to these data points, and
a best fitting curve drawn in gray gives Rfit = 2.16,
B0fit = 20.0, b0fit = − 3.54 (left-handed twist) for the
physical properties of subsurface magnetic field, and
hmaxfit = 1.58Rfit, Lmaxfit = 31.2Rfit, and δfit = 0.4
for the process of flux emergence. In the simulation, a
flux tube with Rsim = 2, B0sim = 17.4, b0sim = − 1
is assumed as the initial state of subsurface magnetic
field, so the radius and magnetic field strength are well
matched with those obtained by inversion, although
there is a more than 3 times difference in the value
of twist. A possible explanation of this discrepancy is
that after they emerge, magnetic field lines tend to be
twisted strongly around the footpoints of the axis field
line (Magara 2004), which may enhance the inversion
value compared to the value of uniform twist initially
assumed in the simulation. As for the process of flux
emergence, the right panel of Fig. 1b shows that the
emergence length is observed as Lsim ∼ 36 = 18Rsim,
while the fitting curve gives Lfit = 42.5 = 19.7Rfit at the
corresponding data point. The emergence height at this
data point is hfit = fef(42.5) = 3.29 = 1.52Rfit, suggest-
ing that intermediate-emergence proceeds, which is ob-
served at the right panel of Figure 1b. Furthermore, the
fitting curve specifies a half-emergence state indicated
by a plus in Figure 3. This shows that the inversion
seems to work well for the process of flux emergence.

4. DISCUSSION

It is well known that the Sun shows periodic varia-
tion of magnetic activity, producing solar activity cy-
cles represented historically by the number of sunspots

observed at the base of solar active regions (Schwabe
1844). For understanding the mechanism of solar ac-
tivity cycles, physical properties of the magnetic field
forming sunspots are important (Choudfuri et al. 2007).
Determining evolutionary paths of active regions in
(ΦA

emg, Hm)-space is a key to these properties, as demon-
strated above. This requires continuous observations
of photospheric vector magnetic field from the birth
to a developed state of each active region, combined
with the method for deriving injected magnetic helic-
ity from observed data (Chae 2001; Kusano et al. 2002;
Démoulin & Berger 2003; Magara & Tsuneta 2008). In
fact, long-term temporal development of Hm and ΦA

emg

has been derived from observed data in several active
regions (Jeong & Chae 2007). When this kind of work
will be performed for the period of a solar activity cy-
cle, the inversion method presented here may provide
the physical properties of subsurface magnetic field re-
sponsible for solar magnetism. Toward this end, we will
investigate the applicability of this method to observed
data in our succeeding paper.
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