참고문헌
- Alitappeh, R.J. and Mahmoudi, F. (2013), MGS-SIFT: a new illumination invariant feature based on SIFT descriptor, International Journal of Computer Theory and Engineering, Vol. 5, No. 1, pp. 99-103.
- Fischler, M.A. and Bolles, R.C. (1981), Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography, Communications of the ACM, Vol. 24, No. 6, pp. 381-395. https://doi.org/10.1145/358669.358692
- Gwon, H.G., Lee, I.H., and Choi, T.S. (2013), Electro-optics and infrared image registration using gaussian pyramids, Advanced Science and Technology Letters, Vol. 29, pp. 55-59.
- Han, D.Y, Kim, D.S., Lee, J.B., Oh, J.H., and Kim, Y.I. (2006), Automatic image-to-image registration of middleand low-resolution satellite images using scale-invariant feature transform technique, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 24, No. 5, pp. 409-416. (in Korean with English abstract)
- Irani, M. and Anandan, P. (1998), Robust multi-sensor image alignment, Sixth International Conference on Computer Vision, pp. 959-966.
- Kim, D.S., Kim, Y.I., and Eo, Y.D. (2007), A study on automatic co-registration and band selection of hyperion hyperspectral images for change detection, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 24, No. 5, pp. 383-392. (in Korean with English abstract)
- Kim, K.S. (2015), Survey on registration techniques of visible and infrared images, IT CoNvergence PRActice (INPRA), Vol. 3, No. 2, pp. 25-35.
- Li, H., Zhang, A., and Hu, S. (2015), A multispectral image creating method for a new airborne four-camera system with different bandpass filters, Sensors, Vol. 15, pp. 17453-17469. https://doi.org/10.3390/s150717453
- Li, H. and Zhou, Y.T. (1995), Automatic EO/IR sensor image registration, Proceeding of IEEE International Conference on Image Processing, pp. 240-243.
- Liu, F. and Seipel, S. (2015), Infrared-visible image registration for augmented reality-based thermographic building diagnostics, Visualization in Engineering, Vol. 3, No. 16, pp. 1-15. https://doi.org/10.1186/s40327-014-0014-y
- Lowe, D.G. (2004), Distinctive image features from scaleinvariant keypoints, International Journal on Computer Vision, IJCV, Vol. 60, No. 2, pp. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- Mikolajczyk, K. and Schmid, C. (2005), A performance evaluation of local descriptors, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, pp. 1615-1630. https://doi.org/10.1109/TPAMI.2005.188
- Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L.V. (2005), A comparison of affine region detectors, International Journal of Computer Vision, Vol. 65, No.1, pp. 43-72. https://doi.org/10.1007/s11263-005-3848-x
- Moigne, J.L., Netanyahu, N.S., and Eastman, R.D. (2011), Image Registration for Remote Sensing, Cambridge University Press, Cambridge, UK, pp. 3-19 & pp. 35-65.
- Morel, J.M. and Yu, G. (2009), ASIFT: a new framework for fully affine invariant image comparison, SIAM Journal on Imaging Sciences, Vol. 2, No. 2, pp. 438-469. https://doi.org/10.1137/080732730
-
Park, J.H., Park, K.W., Baeg, S.H., and Baeg, M.H. (2010),
${\pi}$ -SIFT: A Photometric and Scale Invariant Feature Transform, Patten Recognition, Recent Advances, INTECH Open Access Publisher, pp. 137-150. - Sohn, Y. and Rebello, N.S. (2002), Supervised and unsupervised spectral angle classifiers, Photogrammetric Engineering & Remote Sensing, ASPRS, Vol. 68, No. 12, pp. 1271-1280.
- Yu, Y., Huang, K., Chen, W., and Tan, T. (2012), A novel algorithm for view and illumination invariant image matching, IEEE Transaction on Image Processing, Vol. 21, No. 1, pp. 229-240. https://doi.org/10.1109/TIP.2011.2160271
- Wu, F., Wang, B., Yi, X., Hao, J, Qin, H., and Zhou, H. (2015), Visible and infrared image registration based on visual salient features, Journal of Electronic Imaging, Vol. 24, No. 5, No Page Description(Open Access with Internet)
- Zitova, B. and Flusser, J. (2003), Image registration methods: a survey, Image and Vision Computing, Vol. 21, No. 11, pp. 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9