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In group-oriented applications, it is often required to 
verify a group of signatures/messages. The individual 
verification of signed messages in such applications comes 
at a high cost in terms of computations and time. To 
improve computational efficiency and to speed up the 
verification process, a batch verification technique is a 
good alternative to individual verification. Such a 
technique is useful in many real-world applications, such 
as mail servers, e-commerce, banking transactions, and so 
on. In this work, we propose a new, efficient identity-based 
signature (IDS) scheme supporting batch verifications. We 
prove that the proposed IDS scheme and its various types 
of batch verifications is tightly related to the 
Computational Diffie–Hellman problem under a random 
oracle paradigm. We compare the efficiency of the 
proposed scheme with related schemes that support batch 
verifications. 
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I. Introduction 

In group-oriented applications and multicast 
communications, it is often required to verify a group of 
signatures/messages. However, individual verification of 
signed messages comes at a high cost in terms of computations 
and time. Verification of signatures on a batch basis is essential 
in many real-world applications, such as mail servers, e-
commerce, e-voting, banking transactions, and so on. To 
improve the verification process and minimize the verification 
time, a signature scheme with batch verifications — one that 
verifies multiple signatures simultaneously as a whole — is 
needed.  

The notion of batch cryptography was introduced by Fiat [1] 
in 1989. Fiat proposed a modified version of RSA suitable for 
batch signature generation. Many public key infrastructure 
(PKI)–based schemes with batch verifications have been 
proposed in the literature [2]–[4]. Bellare and others’ scheme 
[4] gave a systematic approach for batch verification and 
presented three generic methods for batching modular 
exponentiations: the random subset test, the small exponents 
test, and the bucket test.  

To overcome the task of maintaining certificate libraries used 
for revoking, storage, and distribution of certificates that 
require huge communication overload within a PKI-based 
setting, Shamir [5], in 1984, devised a new paradigm called 
identity-based cryptography (IBC). Under such a paradigm, the 
public key of a user can be directly derived from the user’s 
personal information, such as a telephone number, an e-mail 
address, and so on. The corresponding private key is issued by 
a trusted authority, termed a key generation center (KGC). 
Since 1984, many encryption and signature schemes have been 
constructed in identity-based settings, but the most usable and 
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practical encryption scheme was devised by Boneh and 
Franklin [6] in 2001 using Weil pairing over elliptic curves. 
Based on Boneh and Franklin’s work in [6], many signature 
schemes in identity-based settings have been proposed [7]–[10].  

However, so far, little attention has been paid to design 
signature schemes that support batch verification. To facilitate 
the wide use of identity-based signature (IDS) schemes in real 
applications such as e-commerce, electronic payment systems, 
and e-government, it is necessary and important to study the 
design of secure and efficient batch verifications for ID-based 
signature schemes. 

The first IDS scheme supporting batch verifications using 
pairings over elliptic curves was proposed by Yoon and others 
[11] in 2004. Based on the number of messages and signers, 
the authors in [11] classified multiple signatures into the 
following types: 
▪ Type 1: Multiple users sign on a single message. 
▪ Type 2: A single user signs on multiple messages.  
▪ Type 3: Multiple users sign on multiple messages, where 

every message is signed by a different user.  
Cao and others [12], in 2006, showed that the scheme in [11] 

is not secure, since an adversary can deceive a verifier to accept 
an invalid signature. In the same year, Cui and others [13] 
proposed an IDS scheme supporting batch verifications of 
Types 2 and 3 above with a different key construction. In 2007, 
Chiang and others [14] proved that the scheme in [13] is 
insecure. 

Zhang and others [15], in 2008, proposed an efficient 
identity-based batch verification scheme for vehicular sensor 
networks using elliptic curves. Tseng and others [16] discussed 
the twelve schemes of Cha and Cheon [7], such as signature 
schemes, and obtained an efficient IDS scheme that supported 
different types of batch verifications, in 2009. Hwang and 
others [17] proposed a new, efficient batch verification for an 
IDS scheme using pairings, in 2015. Ren and others [18], in 
2015, proposed an efficient batch verification scheme for 
detecting illegal signatures without pairings over elliptic curves.  

The schemes in [11] and [16] require a linear number of 
pairing operations with that of signers for a batch verification 
of Type 3. As discussed in [19] and [20], the security reductions 
of the schemes in [11] and [16] are not tight, since these 
schemes use the forking lemma [21] to prove their security.  

In this paper, we propose a new, efficient IDS scheme 
supporting batch verifications. This scheme uses bilinear 
pairings over elliptic curves and is secure under a random 
oracle paradigm with the assumption that the Computational 
Diffie–Hellman (CDH) problem is hard. The proposed IDS 
scheme provides tight reductions due to the fact that its security 
is not proven through use of the forking lemma [21].  

The rest of this paper is organized as follows. Section II 

presents some preliminaries, including bilinear maps and 
complexity assumptions. The proposed IDS scheme is 
depicted in Section III. A security analysis of the IDS scheme is 
presented in Section IV. Batch verifications of the proposed 
IDS scheme are introduced in Section V. A security analysis of 
the batch verifications of the proposed IDS scheme is presented 
in Section VI. A complexity analysis for the batch verifications 
of the proposed IDS scheme is presented in Section VII, and 
Section VIII concludes our work. 

II. Preliminaries 

This section summarizes some fundamental concepts and 
necessary hard problems. 

1. Bilinear Map 

Let ( ,  )G   and ( ,  )TG   be additive and multiplicative 

cyclic groups, respectively, of the same prime order q; that is, 

.TG G q   Let P be a generator in G. A map 
ˆ : Te G G G   is bilinear if the following properties are 

satisfied:  

▪ Bilinear: For all ,  ,A B G  and for any *,  ,qx y Z   
ˆ ˆ( ,  ) ( ,  ) ( ,  ) ( ,  ) .x y xye xA yB e A yB e xA B e A B    

▪ Non-degeneracy: There is an element in G, say  ,A G  such 

that ˆ( ,  ) 1.e A A   

▪ Computable: For any ,  ,A B G  the map ˆ( ,  )e A B  is    

computable using an efficient algorithm.  

Upon making suitable variations in the Weil or Tate pairing, 

one can obtain such maps on elliptic curves over a finite field 

[6], [22]. 

2. Notations and their Descriptions 

Table 1 illustrates the notations and their descriptions used in 
the proposed scheme. 

3. Computational Problems 

In the following, we present some computationally hard 
problems on which the proposed scheme’s security is based. 

A. CDH Problem 

For a given *,  qx y Z  and CDH tuple, ,  ,  ,P xP yP G  
the CDH problem is to find .xyP G  Given an adversary 

,  the advantage of this adversary, Adv ( ),  to solve the 
CDH problem in G in polynomial time with running time t is 
defined as follows: 

*
CDH, Adv ( ) Pr[ ( ,  ,  ) / ,  ].t qP xP yP xyP x y Z     
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Table 1. Notations and their descriptions. 

Notations Description 

( ,  )G   A cyclic group under addition 

( ,  )TG   A cyclic group under multiplication 

q Order of the groups G and GT 

ê  A symmetric bilinear map defined from G × G to GT  

P A generator of the group G  

ID The identity of a user  

Ppub The system’s overall public key 

H1 A cryptographic hash function defined by *
1 :{0,  1}H G

H2 
A cryptographic hash function defined by 

* *
2 :{0,  1} T qH G Z   

QID The public key of a user with identity ID  

dID The private key of a user with identity ID  

  
A signature on the message m made by the signer with identity
ID  

 

B. CDH Assumption 

For any probabilistic polynomial time algorithm ,  the 

advantage, CDH, Adv ( )t  , is negligibly small.  

III. New IDS Scheme  

In this section, we present our new IDS scheme. This 
scheme comprises four algorithms: System Setup, Key Extract, 
Signature Generation, and Signature Verification. Detailed 
functionalities of these algorithms are as follows. 

1. System Setup 

For a given security parameter ,l Z   the KGC runs this 
algorithm to generate the following system parameters: 

▪ Generates additive and multiplicative cyclic groups, say 

( ,  )G   and ( ,  ),TG   respectively, of the same prime order 

q; that is, .TG G q    

▪ Generate a generator P G  and an admissible bilinear map 

ê  such that ˆ : .Te G G G   

▪ Generate an integer qs Z   at random and compute  

pub pubˆ,  ( ,  ).P sP g e P P   

▪ Picks cryptographic hash functions 1 :{0,  1}*H G  and  

2 :{0,  1}* .T qH G Z    

▪ Publishes the system’s public parameters as Params = 

pub 1 2ˆ,  ,  ,  ,  ,  ,  ,  ,  TG G q e P P H H g  and keeps <s> 

securely as the master private key. 

2. Key Extract 

This algorithm, run by the KGC, receives an identity 
ID {0,  1}*  of a user and then computes ID 1(ID)Q H  
and ID ID .d sQ G   The KGC securely transmits (QID, dID) 
to the user with identity “ID.” The user keeps dID securely and 
makes QID public. 

3. Signature Generation 

The user provides the following information as input for this 

algorithm: identity ID, private key dID, Params, and message  

{0,  1}*.m  The computations performed are as follows: 

▪ Select an integer *
qr Z  at random and compute 

,r
TU g G   

*
2 ( ,  ,  ) ,qh H m ID U Z   and V = IDhd   

pub .rP G  

▪ Generate the signature on message m of the user with identity 

ID as ( ,  ) .TU V G G      

4. Signature Verification 

Any verifier can run this algorithm, which takes the signature 
σ on a message m by a user with identity ID as input. The 
verification is done as follows: 

▪ Compute the hash value *
2 ( ,  ID,  ) .qh H m U Z   

▪ Verify the validity of the equation ˆ( ,  )e P V   

pub IDˆ( ,  ) .e P hQ U  If it is valid, then accept the signature; 

else, reject the signature. 

IV. Security Analysis  

This section presents a proof of correctness and a security 
reduction of the proposed IDS scheme under an adaptively 
chosen message and ID attack under a random oracle paradigm.  

1. Proof of Correctness 

The following equation shows that the proposed IDS scheme 
is correct; the verification equation is valid: 

ID pub

ID pub

ID

pub ID

ˆ ˆ( ,  ) ( ,  )

ˆ ˆ( ,  ) ( ,  )

ˆ ˆ( ,  ) ( ,  )  

ˆ( ,  ) .

r

e P V e P hd rP

e P hd e P rP

e sP hQ e sP P

e P hQ U

 






 

2. Security Reduction 

In the following, we prove that the proposed scheme is 
unforgeable under chosen message and identity attacks under a 
random oracle paradigm, with the assumption that the CDH 
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problem is hard.  
Theorem 1. Let � be a probabilistic polynomial time forger 
who forges the proposed IDS scheme with non-negligible 
advantage. Then, there is an algorithm   that can output the 
given CDH instance ( ,  ,  )P aP bP G with a non-negligible 
advantage in probabilistic polynomial time. 
Proof. Let   be a forger who breaks the proposed IDS 
scheme. We show that by using   one can construct an 
algorithm   that can solve the CDH problem. Algorithm 
 is given (P, aP, bP) as a random instance of the CDH 
problem in G; that is, its goal is to output abP  G. Algorithm 
  simulates an original signer to obtain a valid signature from 

, and by doing so, it can solve the CDH problem.         

A. Setup/Queries 

Algorithm   sets Ppub = aP as the system’s overall public 

key and provides   with Params. At any time,   may 
make queries to oracles H1, H2, key extract, and signature. We 

presume that prior to any query from key extract, both a 

signature query and a H1 query have already been made on an 
identity ID. To respond to these queries, algorithm   does 

the following: 

▪ H1 – queries: Algorithm   keeps a list, L1, which is empty 

initially of tuples, (ID, c, d, v) to respond to H1 – queries. 

Upon receiving a query from the H1 oracle for  

ID {0,  1}*,  made by , algorithm   proceeds as 

follows: 

(i) If L1 consists of the queried ID, then algorithm   

responds with 1(ID) .H v G   

(ii) If not, then algorithm   flips a coin {0,  1}d  

generated at random, such that Pr[ 0] 1/ ( 1).Kd q    

Here, qK denotes a query made to the key extraction 

oracle. 

(iii) Now, algorithm   picks a random integer *
qc Z  

and computes ( )v c bP G   for d = 0, and v = 

cP G  for d = 1. 

(iv) Algorithm   adds (ID, c, d, v) to list L1 and returns 

1(ID)H v G   to .� 

▪ H2 – queries: Algorithm   keeps a list L2 of tuples, (m, ID, 

U, w), which is empty initially. To respond to H2 queries 

made by � on tuple (m, ID, U), algorithm   proceeds as 

follows: 

(i) If L2 contains queried tuple (m, ID, U), then algorithm   

provides *
2 ( ,  ID,  ) .qH m U w Z   

(ii) If not, then algorithm   picks a random integer 
* ,qw Z  inserts (m, ID, U, w) in L2 and returns  

*
2 ( ,  ID,  ) qH m U w Z   to .� 

B. Key Extraction Queries 

Upon receiving the private key queries on an identity ID by 

, algorithm   retrieves the respective tuple (ID, c, d, v) 

from L1 and does the following:  
1) It outputs “failure” and then halts, for d = 0. 
2) If d = 1, then it computes and returns ID pub ( )d cP c aP    

( )a cP G  to .� 

C. Signature Queries 

Upon receiving the signature query on a message m under 
ID from , algorithm   retrieves the H1 oracle and obtains 
the tuple (ID, c, d, v) from L1. Algorithm   then selects a 
random integer *

qx Z  and computes .xU g  In addition, 
if the list L2 contains the tuple (m, ID, U, w), then   chooses 

*
qw Z  and tries again; that is,   adds (m, ID, U, w)     

to L2. Now,   computes pub( )V wc x P   and returns 

( , )U V   to � as the queried signature. 

The responses to signature queries are valid, as well the 

output . This can be seen from the following:  

 pub

pub pub

pub ID

ˆ ˆ( ,  ) ,  ( )

ˆ ˆ( ,  ) ( ,  )

ˆ ˆ           ( ,  ) ( ,  )

ˆ( ,  ) .

e P V e P wc x P

e P wcP e P xP

e aP wcP e aP xP

e P wQ U

 






 

D. Forgery 

Eventually, � stops by conceding failure or returns a 
forgery σ on m under ID. Algorithm   obtains (ID, c, d, v) 
from L1, declares failure if d = 1, and stops. If not, then it 
computes QID = c(bP) for d = 0. The forged signature  must 
satisfy pub IDˆ ˆ( ,  ) ( ,  ) .e P V e P wQ U  Now,   retrieves the 
respective tuple (m, ID, U, w) from L2 and computes 

pub( ) ;V wc x P   thus, we have  

 pub ID pub pub

pub

pub

pub

ˆ ˆ ˆ( ,  ) ,  ( ( )) ( ,  )

ˆ( ,  )

ˆ( ,  )

ˆ( ,  )

 .

xe P wQ U e P w c bP e P P

e P wcbP xP

e P wcabP xP

e P V

V wcabP xP



 

 


  

 

Now,   outputs abP as a solution to the CDH instance    

by computing 1 1
pub( ).abP w c V xP   This concludes the 

description of algorithm .                           ■ 

V. Batch Verifications of Proposed IDS Scheme  

This section presents batch verifications of different types for 
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the proposed IDS scheme. To verify a k-batch 

signature, 1, 2, ..., {(ID ,  ,  )} ,i i i i nm    for ,n k  the verifier 

uses the following batch verify algorithms:  
1) For Type 2 batch verifications: In this case, we have 

1ID ID ... ID .n   The verifier computes IDi
Q   

1(ID )iH G  and 2 ( ,  ),i i ih H m U for 1,  2, ... , .i n  

In addition, the verifier computes 
1

,
n

i
i

U U


  where 

.ir
iU g  The Type 2 batch verification algorithm outputs 

“1” if the following equation holds; otherwise, it outputs 
“0”: 

pub ID
1 1

ˆ ˆ, , .
n n

i i
i i

e P V e P h Q U
 

   
   

   
   

2) For Type 3 (or 1) batch verifications: The verifier first 
computes ID 1(ID )

i iQ H G   and 2 ( ,  ),i i ih H m U  

for 1,  2, ... , .i n  In addition, the verifier computes 

1

,
n

i
i

U U


  where .ir
iU g  The Type 3 (or 1) batch 

verification algorithm outputs “1” if the following equation 
holds; otherwise, it outputs “0”: 

pub ID
1 1

ˆ ˆ, ,  .
i

n n

i i
i i

e P V e P h Q U
 

   
   

   
   

One can verify that the batch verifications of the proposed IDS 

scheme are correct as shown below. 

Proof of Correctness. For Type 2 batch verifications, we have 

the following: 

ID pub
1 1

pub ID pub
1 1

pub ID
1

ˆ ˆ,  ,  ( )

ˆ ˆ, , .

ˆ , .

n n

i i i
i i

n n

i i
i i

n

i
i

e P V e P h d r P

e P h Q e P r P

e P h Q U

 

 



   
    

   
   

    
   
 

  
 

 

 



 

For Type 3 (or 1) batch verifications, we have the following: 

ID pub
1 1

pub ID
1

pub ID pub
1 1

pub ID
1

ˆ ˆ,  ,  ( )

ˆ ,  ( )

ˆ ˆ,  ( ) ,

ˆ ,  .

i

i

i

i

n n

i i i
i i

n

i i
i

n n

i i
i i

n

i
i

e P V e P h d r P

e P h Q r P

e P h Q e P r P

e P h Q U

 



 



   
    

   
 

  
 
   

    
   
 

  
 

 



 



 

VI. Security Analysis of Batch Verifications of 
Proposed IDS Scheme 

In this section, we will show that the proposed IDS scheme 
provides k-batch existential unforgeability against adaptive 
chosen message and ID attacks.  

Definition 1. The proposed k-batch IDS scheme offers 

existential unforgeability under adaptively chosen message and 

ID attacks if there is no probabilistic polynomial time 

adversary/forger �with non-negligible advantage in the 

following game played between � and a challenger,  : 

1) Setup: This phase is similar to the one in Theorem 1. 

2) Queries: Forger � makes similar queries as in Theorem 1. 

3) k-batch forgery: For some integer ,n k  the forger � 

outputs n signatures (ID ,  ,  )i i im  , for 1,  2, ... , .i n  

Note that there exists at least one index i such that IDi is not 

asked the extract query and (IDi, mi) in the key extraction 

oracle and a tuple (IDi, mi) is also not asked in the sign 

query; that is, the forger � owns at most (n – 1) private 

keys of n identities. Forger � wins the game if the batch 

verify algorithm outputs “1.” The advantage of the forger 

� is as the probability that� wins. 

1. Security of k-Batch Signature for Type 2 

A security proof for Type 2 batch verifications of the 
proposed IDS scheme is presented below. 
Theorem 2. Let � be a probabilistic polynomial-time 
forger who can forge the Type 2 k-batch signature of the 
proposed IDS scheme with a non-negligible advantage under a 
random oracle paradigm. Then, there is an algorithm   that 
can output the given CDH instance with non-negligible 
advantage in probabilistic polynomial-time.  
Proof. Assume that � is a forger who can forge a Type 2  
k-batch signature under adaptively chosen message and ID 
attacks with a non-negligible advantage. As in Theorem 1, we 
show that there exists an algorithm   that solves the given 
instance of the CDH problem using .  Algorithm   runs 
the setup algorithm to obtain the public and private keys. The 
public key is sent to .  As discussed in Theorem 1, � 
issues queries and is answered by .  

Algorithm   obtains the corresponding tuple (IDi, ci, di, vi) 
from list L1, declares failure if d = 1, and stops. If not, it 
computes QID = c(bP) for d = 0.  

The signature ( ,  )U V   must satisfy the equation 

   pub ID1 1
ˆ ˆ, , .

n n
i ii i

e P V e P h Q U
 

   

Now,   recovers the corresponding tuple (mi, ID, Ui, wi) 
from list L2 and computes 1 1 1 pub( ) .V w c x P   Consider 
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pub 1 ID pub 1 1 1ˆ ˆ ˆ( ,  ) ( ,  ) ( ,  ( ) )e P w Q e P x P e aP w c bP x P   

1 1 pub 1ˆ ˆ( ,  ( ) ) ( ,  ).e P w c abP x P e P V   

1 1 1 pub 1 1 1 pub( ) ( ) .V w c abP x P w c abP V x P       

Now,   outputs abP as a solution to the CDH instance by 

computing 1 1
1 1 1 pub( ).abP w c V x P                   ■ 

2. Security of k-Batch Signature for Types 1 and 3 

In the following, we prove the security of batch verifications 
of Types 1 and 3 of the proposed IDS scheme. Notice that a 
Type 1 batch verification is a subcase of Type 3. Thus, it is 
enough to prove the security of a k-batch signature of Type 3. 

Theorem 3. Let � be a probabilistic polynomial-time 

forger who can forge a Type 3 k-batch signature of the 

proposed IDS scheme with a non-negligible advantage under a 

random oracle paradigm. Then, there is an algorithm   that 

can output the given CDH instance with non-negligible 

advantage in probabilistic polynomial-time.  
Proof. Let IDi, for 1,  2, ... , ,i n  denote the identities of 
distinct signers participating in a signing. From Definition 1, an 
adversary owns at most (n – 1) private keys of n signers. 
Assume that there exists a probabilistic polynomial-time 
adversary � that can forge a k-batch signature of the 
proposed IDS scheme of Type 3 for adaptively chosen 
message and ID attacks with a non-negligible advantage. 

As in Theorem 1, there exists a probabilistic polynomial-
time algorithm   that returns a forged k-batch signature of 
Type 3,  on messages {mi} under {IDi}, for 

1,  2, ... , ,i n and � must not have requested a signature 
on m1 under ID1. 

Algorithm   obtains (IDi, ci, di, vi) from L1 and continues 
if d1 = 0 and di = 1 for 2 .i n   If not, then   declares 
failure and stops. We have 

1ID 1( )Q c bP  for d1 = 0 and 

IDi iQ c P  for di = 1, i > 1. The forged Type 3 k-batch  

signature  must satisfy the equation  1
ˆ ,

n
ii

e P V


  

 pub ID1
ˆ , .

i

n
ii

e P w Q U
  

Now,   retrieves the n respective tuples (IDi, mi, Ui, wi) 
from L2 and computes pub( ) ,i i i iV w c x P   for i > 1; thus, 

we have pub pub IDˆ ˆ ˆ( , ) ( , ( ) ) ( , ) ,
ii i i i i ie P V e P w c x P e P w Q U    

which implies i is valid. Now,   considers 

1 2
,

n
ii

V V V


   and outputs 

1 1 1 1 pub
2

1 1 1 1 pub 1 1 1 1 pub

ˆ ˆ ˆ( ,  ) ,  ( ,  ).

 .

n

i
i

e P V e P V V e P w c abP k P

V w c abP x P w c abP V x P


 
    

 
     


 

Now,  outputs abP as a solution to the CDH instance by 
computing 1 1

1 1 1 1 pub( ).abP w c V x P                       ■ 

VII. Complexity Analysis 

In this section, we present the complexity issues and 
compare the computational efficiency of the proposed IDS 
scheme supporting batch verifications with related schemes. 
For comparison, we consider the time-consuming operations. 
According to [23] and [24], p m1 1200 ,T t  m m1 29 ,T t  
and a m1 0.12 ,T t  where Ta denotes the time for evaluating a 
point addition in G, Tm denotes the time for evaluating a point 
scalar multiplication over G, Tp denotes the time to compute 
one pairing operation, and tm denotes the time to perform a 
modular multiplication in *.qZ  An efficiency comparison of 
the proposed IDS scheme supporting batch verifications with 
related schemes; Yoon and others [11]; and Tseng and others 
[16] is presented in Table 2.  

Compared with the other operations, the pairing evaluation is 
the most costly in terms of time. Despite the fact that much 
research has taken place to speed up the pairing computation 
[22], it is still time consuming. The proposed IDS scheme is 
efficient when compared to the schemes in [11] and [16] for 
batch verifications of Types 2 and 3. In particular, for batch 
verifications of Type 3, the pairing operations in the schemes in 
[11] and [16] grow linearly with that of the signers, whereas the 
proposed IDS scheme requires a constant number (only two) 
of pairing operations irrespective of the number of signers, 
which reduces greatly the computational complexity. Hence, 
the proposed IDS scheme supporting batch verifications is 
more efficient than the related existing schemes.  

VIII. Conclusion  

In this paper, we have proposed a new, efficient IDS scheme 
using bilinear pairings supporting batch verifications. We have 
proved that various types of batch verifications for the  
 

Table 2. Efficiency comparison. 

Scheme Type 2 batch verifications Types 3 batch verifications

Yoon and 
others [11] 

2 (2 2)

(29.24 2399.76)

p m a

m

T nT n T

n t

  

 
 

( 1) (2 2)

(1229.24 1199.76)

p m a

m

n T nT n T

n t

   

 

Tseng and 
others [16] 

2 (2 2)

(29.24 2399.76)

p m a

m

T nT n T

n t

  

 
 

( 1) (2 2)

(1229.24 1199.76)

p m a

m

n T nT n T

n t

   

 

Proposed 
scheme 

2

(29 2400)

p m

m

T nT

n t



 
 

2 ( 1)

(29.12 2399.88)

p m a

m

T nT n T

n t

  

 
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proposed IDS scheme are unforgeable under a random oracle 
paradigm with the assumption that the CDH problem is 
intractable. In addition, a security reduction of the proposed 
IDS scheme and its batch verifications has been obtained 
without the use of a forking lemma [21], and so is tightly 
related to the CDH problem. For batch verifications of Type 3, 
the proposed IDS scheme requires a constant number of 
pairing operations, which greatly improves the computational 
efficiency. In summary, the performance of our scheme is good, 
which makes the scheme applicable in practice. Both the 
security and high efficiency of the batch verifications mean that 
it is possible to apply them in environments where 
computational issues are seen as the main constraints, such as 
in ad-hoc networks. In future, we will extend our batch 
verification schemes for various forms of anonymous 
authentication, such as group signatures, e-cash, e-voting, 
intelligent cars to control traffic, and anonymous credentials. 
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