치과용 티타늄 임플란트의 골융합 증진을 위한 체어사이드 친수성 표면처리방법

Chair-side surface treatment method for inducing hydrophilicity in titanium dental implant

  • 이정환 (단국대학교 조직재생공학연구소) ;
  • 전수경 (단국대학교 조직재생공학연구소) ;
  • 이해형 (단국대학교 조직재생공학연구소)
  • Lee, Jung-Hwan (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Jun, Soo-Kyung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Lee, Hae-Hyoung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
  • 투고 : 2016.08.30
  • 심사 : 2016.10.10
  • 발행 : 2016.12.01

초록

Titanium (Ti) has been widely used for dental implant due to great biocompatibility and bonding ability against natural alveolar bone. A lot of titanium surface modification has been introduced in dentistry and, among them, methods to introduce micro/nano-roughened surface were considered as clinically approved strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with topography oriented favors in cell attachment, chair-side surface treatment with reproducibility of micro/nano-topography is introduced as next strategy to further enhance cellular functionalities. Extensive research has been investigated to study the potential of micro/nano-topography preserved chair-side surface treatment for Ti dental implant. This review will discuss ultraviolet, low level of laser therapy and non-thermal atmospheric pressure plasma on Ti dental implant with micro/nano-topography as next generation of surface treatment due to its abilities to induce super-hydrophilicity or biofunctionality without change of topographical cues.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Branemark P-I. Osseointegration and its experimental background. J Prosthet Dent 1983;50(3):399-410. https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015;2015:1.
  3. Bang SM, Moon HJ, Kwon YD, Yoo JY, Pae A, Kwon IK. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. Clin Oral Implants Res 2014;25(7):831-837. https://doi.org/10.1111/clr.12146
  4. Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomater 2015;11:494-502. https://doi.org/10.1016/j.actbio.2014.10.017
  5. Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 2013;34(13):3184-3195. https://doi.org/10.1016/j.biomaterials.2013.01.008
  6. Domanski M, Luttge R, Lamers E, Walboomers XF, Winnubst L, Jansen JA, Gardeniers JG. Submicronpatterning of bulk titanium by nanoimprint lithography and reactive ion etching. Nanotechnology 2012;23(6):065306. https://doi.org/10.1088/0957-4484/23/6/065306
  7. Chien CY, Liu TY, Kuo WH, Wang MJ, Tsai WB. Dopamine?assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium. J Biomed Mater Res A 2013;101(3):740-747.
  8. Lin X, Zhou L, Li S, Lu H, Ding X. Behavior of acid etching on titanium: topography, hydrophility and hydrogen concentration. Biomedical Materials 2013;9(1):015002. https://doi.org/10.1088/1748-6041/9/1/015002
  9. Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE. 10 Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid?Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clin Implant Dent Relat Res 2012;14(6):839-851. https://doi.org/10.1111/j.1708-8208.2012.00456.x
  10. Choi C-R, Yu H-S, Kim C-H, Lee J-H, Oh C-H, Kim H-W, Lee H-H. Bone Cell Responses of Titanium Blasted with Bioactive Glass Particles. J Biomater Appl 2009.
  11. Lin HY, Liu Y, Wismeijer D, Crielaard W, Deng DM. Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy. Int J Oral Maxillofac Implants 2013;28(5).
  12. Lee JH, Ogawa T. The biological aging of titanium implants. Implant Dent 2012;21(5):415-421. https://doi.org/10.1097/ID.0b013e31826a51f4
  13. Suketa N, Sawase T, Kitaura H, Naito M, Baba K, Nakayama K, Wennerberg A, Atsuta M. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent Relat Res 2005;7(2):105-111. https://doi.org/10.1111/j.1708-8208.2005.tb00053.x
  14. Nakashima T, Ohko Y, Kubota Y, Fujishima A. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets. Journal of Photochemistry and Photobiology A: Chemistry 2003;160(1-2):115-120. https://doi.org/10.1016/S1010-6030(03)00229-6
  15. Minamikawa H, Ikeda T, Att W, Hagiwara Y, Hirota M, Tabuchi M, Aita H, Park W, Ogawa T. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. J Biomed Mater Res A 2014;102(10):3618-3630. https://doi.org/10.1002/jbm.a.35030
  16. Ikeda T, Hagiwara Y, Hirota M, Tabuchi M, Yamada M, Sugita Y, Ogawa T. Effect of photofunctionalization on fluoride-treated nanofeatured titanium. J Biomater Appl 2014;28(8):1200-1212. https://doi.org/10.1177/0885328213501566
  17. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009;30(6):1015-1025. https://doi.org/10.1016/j.biomaterials.2008.11.004
  18. Suzuki T, Hori N, Att W, Kubo K, Iwasa F, Ueno T, Maeda H, Ogawa T. Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng Part A 2009;15(12):3679-3688. https://doi.org/10.1089/ten.tea.2008.0568
  19. Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO 2 layers on biomaterials surfaces. Biomaterials 2010;31(14):3827-3839. https://doi.org/10.1016/j.biomaterials.2010.01.133
  20. Saita M, Ikeda T, Yamada M, Kimoto K, Lee MCI, Ogawa T. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium. Int J Nanomedicine 2016;11:223-234.
  21. Aita H, Att W, Ueno T, Yamada M, Hori N, Iwasa F, Tsukimura N, Ogawa T. Ultraviolet lightmediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomater 2009;5(8):3247-3257. https://doi.org/10.1016/j.actbio.2009.04.022
  22. Hirota M, Ikeda T, Tabuchi M, Iwai T, Tohnai I, Ogawa T. Effect of ultraviolet-mediated photofunctionalization for bone formation around medical titanium mesh. J Oral Maxillofac Surg 2014;72(9):1691-1702. https://doi.org/10.1016/j.joms.2014.05.012
  23. Sugita Y, Honda Y, Kato I, Kubo K, Maeda H, Ogawa T. Role of photofunctionalization in mitigating impaired osseointegration associated with type 2 diabetes in rats. Int J Oral Maxillofac Implants 2014;29(6).
  24. Yamada Y, Yamada M, Ueda T, Sakurai K. Reduction of biofilm formation on titanium surface with ultraviolet-C pre-irradiation. J Biomater Appl 2013.
  25. Maiman TH. Stimulated Optical Radiation in Ruby. Nature 1960;187(4736):493-494. https://doi.org/10.1038/187493a0
  26. Verma SK, Maheshwari S, Singh RK, Chaudhari PK. Laser in dentistry: An innovative tool in modern dental practice. Natl J Maxillofac Surg 2012;3(2):124-132. https://doi.org/10.4103/0975-5950.111342
  27. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable Biomaterials for Regenerating Complex Craniofacial Tissues. Adv Mater 2009;21(32-33):3368-3393. https://doi.org/10.1002/adma.200802009
  28. Wadhawan R, Solanki G, Bhandari A, Rathi A, Dash R. Role of laser therapy in dentistry: a review. Int J Biomed Res 2014;5(3):153-157. https://doi.org/10.7439/ijbr.v5i3.528
  29. Kamel MS, Khosa A, Tawse-Smith A, Leichter J. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 2014;29(6):1977-1985. https://doi.org/10.1007/s10103-013-1396-0
  30. Dortbudak O, Haas R, Mailath-Pokorny G. Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res 2002;13(3):288-292. https://doi.org/10.1034/j.1600-0501.2002.130308.x
  31. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 2004;15(3):325-332. https://doi.org/10.1111/j.1600-0501.2004.00994.x
  32. Wan H, Williams RL, Doherty PJ, Williams DF. A study of cell behaviour on the surfaces of multifilament materials. J Mater Sci Mater Med 1997;8(1):45-51. https://doi.org/10.1023/A:1018542313236
  33. Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Lasers for the Treatment of Dentin Hypersensitivity: A Meta-analysis. J Dent Res 2013;92(6):492-499. https://doi.org/10.1177/0022034513487212
  34. Allegrini S, Jr., Yoshimoto M, Salles MB, de Almeida Bressiani AH. Biologic response to titanium implants with laser-treated surfaces. Int J Oral Maxillofac Implants 2014;29(1):63-70. https://doi.org/10.11607/jomi.3213
  35. Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA. Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 2007;25(2):96-101. https://doi.org/10.1089/pho.2006.2030
  36. Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M. Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation: An experimental study on sheep. Clin Oral Implants Res 2007;18(4):517-524. https://doi.org/10.1111/j.1600-0501.2007.01369.x
  37. Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, Pontes AE. Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 2013;28(1):349-352. https://doi.org/10.1007/s10103-012-1167-3
  38. Lee JH, Kim YH, Choi EH, Kim KM, Kim KN. Air atmospheric-pressure plasma-jet treatment enhances the attachment of human gingival fibroblasts for early peri-implant soft tissue seals on titanium dental implant abutments. Acta Odontol Scand 2015;73(1):67-75. https://doi.org/10.3109/00016357.2014.954265
  39. Lee JH, Om JY, Kim YH, Kim KM, Choi EH, Kim KN. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma. PLoS One 2016;11(2):e0150279. https://doi.org/10.1371/journal.pone.0150279
  40. Lee JH, Kwon JS, Kim YH, Choi EH, Kim KM, Kim KN. Air atmospheric pressure plasma jet pretreatment for drop-wise loading of dexamethasone on hydroxyapatite scaffold for increase of osteoblast attachment. J Nanosci Nanotechnol 2014;14(10):7654-7661. https://doi.org/10.1166/jnn.2014.9414
  41. Xuan P, Changhong C, Kai Z, Zhaoyang F. TiO 2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells. Nanotechnology 2011;22(23):235402. https://doi.org/10.1088/0957-4484/22/23/235402
  42. Jung-Hwan L, Jae-Sung K, Ji-yeon O, Yong-Hee K, Eun-Ha C, Kwang-Mahn K, Kyoung-Nam K. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. Jpn J Appl Phys 2014;53(8):086202. https://doi.org/10.7567/JJAP.53.086202
  43. Duske K, Koban I, Kindel E, Schroder K, Nebe B, Holtfreter B, Jablonowski L, Weltmann KD, Kocher T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol 2012;39(4):400-407. https://doi.org/10.1111/j.1600-051X.2012.01853.x
  44. Seo HY, Kwon J-S, Choi Y-R, Kim K-M, Choi EH, Kim K-N. Cellular Attachment and Differentiation on Titania Nanotubes Exposed to Air- or Nitrogen-Based Non-Thermal Atmospheric Pressure Plasma. PLoS One 2014;9(11):e113477. https://doi.org/10.1371/journal.pone.0113477
  45. Lee J-H, Kwon J-S, Kim Y-H, Choi E-H, Kim K-M, Kim K-N. The effects of enhancing the surface energy of a polystyrene plate by air atmospheric pressure plasma jet on early attachment of fibroblast under moving incubation. Thin Solid Films 2013;547:99-105. https://doi.org/10.1016/j.tsf.2013.04.105
  46. Lee E-J, Kwon J-S, Uhm S-H, Song D-H, Kim YH, Choi EH, Kim K-N. The effects of non-thermal atmospheric pressure plasma jet on cellular activity at SLA-treated titanium surfaces. Curr Appl Phys 2013;13, Supplement 1:S36-S41. https://doi.org/10.1016/j.cap.2012.12.023
  47. Duske K, Jablonowski L, Koban I, Matthes R, Holtfreter B, Sckell A, Nebe JB, von Woedtke T, Weltmann KD, Kocher T. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials 2015;52:327-334. https://doi.org/10.1016/j.biomaterials.2015.02.035
  48. Yoo E-M, Uhm S-H, Kwon J-S, Choi H-S, Choi EH, Kim K-M, Kim K-N. The Study on Inhibition of Planktonic Bacterial Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application. J Biomed Nanotechnol 2015;11(2):334-341. https://doi.org/10.1166/jbn.2015.2030