DOI QR코드

DOI QR Code

Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

  • Na, Sung-Ho (Department of Space Survey Information Technology, Ajou University) ;
  • Cho, Jungho (Korea Astronomy and Space Science Institute) ;
  • Kim, Tu-Hwan (Department of Space Survey Information Technology, Ajou University) ;
  • Seo, Kiweon (Department of Earth Science Education, Seoul National University) ;
  • Youm, Kookhyoun (Department of Earth Science Education, Seoul National University) ;
  • Yoo, Sung-Moon (Korea Astronomy and Space Science Institute) ;
  • Choi, Byungkyu (Korea Astronomy and Space Science Institute) ;
  • Yoon, Hasu (Korea Astronomy and Space Science Institute)
  • 투고 : 2016.09.10
  • 심사 : 2016.10.28
  • 발행 : 2016.12.15

초록

The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

키워드

참고문헌

  1. Bizouard C, Gambis D, The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005, in International Association of Geodesy Symposia, vol. 134, Geodetic Reference Frames, ed. Drewes H (Springer, Heidelberg, 2009), 265-270. http:// dx.doi.org/10.1007/978-3-642-00860-3_41
  2. Chapront J, Chapront-Touze M, Francou G, A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements, Astron. Astrophys. 387, 700-709 (2002). http://dx.doi.org/10.1051/0004-6361:20020420
  3. Chen JL, Long-term polar motion and climate change, in 2012 AOGS - AGU (WPGM) Joint Assembly, Sentosa Island, Singapore, 13-17 Aug 2012.
  4. Chen JL, Wilson CR, Ries JC, Tapley BD, Rapid ice melting drives Earth's pole to the east, Geophys. Res. Lett. 40, 2625- 2630 (2013). http://dx.doi.org/10.1002/grl.50552
  5. Dehant V, Mathews MP, Earth rotation variations, in Treatise of Geophysics, vol. 3, Geodesy, eds. Herring T, Schubert J (Elsevier, Oxford, 2009), 295-349.
  6. Dickey JO, Bender PL, Faller JE, Newhall XX, Ricklefs RL, et al., Lunar laser ranging: a continuing legacy of the Apollo program, Science 265, 482-490 (1994). http://dx.doi.org/10.1126/science.265.5171.482
  7. Eubanks TM, Variations in the orientation of the Earth, in American Geophysical Union Geodynamics Series, vol. 24, Contributions of space geodesy to geodynamics: Earth dynamics, eds. Smith DE, Turcotte DL (American Geophysical Union, Washington, D. C., 1993), 1-54.
  8. Fairbanks RG, A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature 342, 637-642 (1989). http://dx.doi.org/10.1038/342637a0
  9. Gasperini P, Sabadini R, Yuen DA, Excitation of the Earth's rotational axis by recent glacial discharges, Geophys. Res. Lett. 13, 533-536 (1986). http://dx.doi.org/10.1029/ GL013i006p00533
  10. Gross RS, Earth rotation variations - long period, in Treatise on Geophysics, vol. 3, Geodesy, eds. Herring T, Schubert J (Elsevier, Oxford, 2009), 239-294.
  11. Harada Y, Long-term polar motion on a quasi-fluid planetary body with an elastic lithosphere: semi-analytic solutions of the time-dependent equation, Icarus 220, 449-465 (2012). http://dx.doi.org/10.1016/j.icarus.2012.05.024
  12. Johnston P, Lambeck K, Postglacial rebound and sea level contributions to changes in the geoid and the Earth's rotation axis, Geophys. J. Int. 136, 537-558 (1999). http:// dx.doi.org/10.1046/j.1365-246x.1999.00738.x
  13. Lambeck K, The Earth's variable rotation: geophysical causes and consequences (Cambridge University Press, New York, 1980).
  14. McCarthy DD, Seidelmann PK, Time: from Earth rotation to atomic physics (Wiley-VCH, Weinheim, 2009).
  15. Melchior P, The tides of the planet Earth (Pergamon Press, Oxford, 1983).
  16. Mitrovica JX, Wahr J, Ice age Earth rotation, Ann. Rev. Earth Planet. Sci. 39, 577-616 (2011). http://dx.doi.org/10.1146/annurev-earth-040610-133404
  17. Munk WH, MacDonald GJF, The rotation of the Earth: a geophysical discussion (Cambridge University Press, Cambridge, 1960).
  18. Na SH, Lee S, Re-estimation of Earth spin rotational energy decrease due to tidal friction, Geosci. J. 18, 1-6 (2014). http:// dx.doi.org/10.1007/s12303-013-0069-0
  19. Na SH, Cho JH, Baek J, Kwak Y, Yoo SM, Spectral analysis on Earth's spin rotation for the recent 30 years, J. Korean Phys. Soc. 61, 152-157 (2012). http://dx.doi.org/10.3938/ jkps.61.152
  20. Na SH, Kwak Y, Cho JH, Yoo SM, Cho S, Characteristics of perturbations in recent length of day and polar motion, J. Astron. Space Sci. 30, 33-41 (2013). http://dx.doi.org/10.5140/JASS.2013.30.1.033
  21. Nakiboglu SM, Lambeck K, Deglaciation effects on the rotation of the Earth, Geophys. J. Int. 62, 49-58 (1980). http://dx.doi.org/10.1111/j.1365-246X.1980.tb04843.x
  22. Petit G, Luzum B, IERS Conventions (2010), International Earth Rotation and Reference Systems Service Technical Note, No. 36 (2010).
  23. Ray RD, Ponte RM, Barometric tides from ECMWF operational analyses, Ann. Geophys. 21, 1897-1910 (2003). http:// dx.doi.org/10.5194/angeo-21-1897-2003
  24. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, et al., A reconciled estimate of Ice-Sheet mass balance, Science 338, 1183-1189 (2012). http://dx.doi.org/10.1126/ science.1228102
  25. Trupin AS, Effects of polar ice on the Earth's rotation and gravitational potential, Geophys. J. Int. 113, 273-283 (1993). http://dx.doi.org/10.1111/j.1365-246X.1993.tb00887.x
  26. Wahr J, Polar motion models: angular momentum approach, Proceedings of the workshop on 'Forcing of polar motion in the Chandler frequency band: a contribution to understanding international climate variation', eds. Plag HP, Chao B, Gross R, van Dam T (European Center for Geodynamics and Seismology, Luxemburg, 2005), 1-7.

피인용 문헌

  1. The comparison of different spectrum analysis methods for LOD time series vol.15, pp.3-4, 2018, https://doi.org/10.1007/s11770-018-0671-z