DOI QR코드

DOI QR Code

Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

  • 투고 : 2016.11.18
  • 심사 : 2016.12.06
  • 발행 : 2016.12.15

초록

Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

키워드

참고문헌

  1. Bisi MM, Gonzalez-Esparza JA, Aguilar-Rodriguez E, Chang O, Jackson BV, et al., The worldwide interplanetary scintillation (IPS) stations (WIPSS) network, Proceedings of the 13th European Space Weather Week, Oostende, Belgium, 13-18 Nov 2016.
  2. Community Coordinated Modeling Center (CCMC), CME Arrival Time Scoreboard [Internet], cited 2016, available from: http://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/
  3. Jackson BV, Clover JM, Hick PP, Buffington A, Bisi MM, et al., Inclusion of real-time in-situ measurements into the UCSD time-dependent tomography and its use as a forecast algorithm, Sol. Phys. 285, 151-165 (2013). http://dx.doi.org/10.1007/s11207-012-0102-x
  4. Jackson BV, Odstrčil D, Yu HS, Hick PP, Buffington A, et al., The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3-D MHD prediction model, Space Weather 13, 104-115 (2015). http://dx.doi.org/10.1002/2014SW001130
  5. Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastatter L, et al., Ensemble modeling of CMEs using the WSAENLIL+ Cone model, Sol. Phys. 290, 1775-1814 (2015). http://dx.doi.org/10.1007/s11207-015-0692-1
  6. Odstrcil D, Modeling 3-D solar wind structure, Adv. Space Res. 32, 497-506 (2003). http://dx.doi.org/10.1016/S0273-1177(03)00332-6
  7. Odstrcil D, Pizzo VJ, Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt, J. Geophys. Res. 104, 483-492 (1999a). http://dx.doi. org/10.1029/1998JA900019
  8. Odstrcil D, Pizzo VJ, Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 2. CME launched adjacent to the streamer belt, J. Geophys. Res. 104, 493-503 (1999b). http://dx.doi. org/10.1029/1998JA900038
  9. Odstrcil D, Smith Z, Dryer M, Distortion of the heliospheric plasma sheet by interplanetary shocks, Geophys. Res. Lett. 23, 2521-2524 (1996). http://dx.doi.org/10.1029/96GL00159
  10. Taktakishvili A, Kuznetsova M, MacNeice P, Hesse M, Rastätter L, et al., Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model, Space Weather 7, S03004 (2009). http://dx.doi.org/10.1029/2008SW000448
  11. Yu HS, Jackson BV, Hick PP, Buffington A, Odstrcil D, et al., 3D Reconstruction of interplanetary scintillation (IPS) remote-sensing data: global solar wind boundaries for driving 3D-MHD models, Sol. Phys. 290, 2519-2538 (2015). http://dx.doi.org/10.1007/s11207-015-0685-0