DOI QR코드

DOI QR Code

Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

  • Rahoma, Walid A. (Department of Astronomy and Space Science, Cairo University)
  • Received : 2016.11.08
  • Accepted : 2016.11.30
  • Published : 2016.12.15

Abstract

A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

Keywords

References

  1. Borucki WJ, Koch D, Basri G, Batalha N, Brown T, et al., Kepler planet-detection mission: introduction and first results, Science 327, 977-980 (2010). http://dx.doi.org/10.1126/ science.1185402
  2. Boss AP, Gas giant protoplanets formed by disk instability in binary star systems, Astrophys. J. 641, 1148-1161 (2006). http://dx.doi.org/10.1086/500530
  3. Carvalho JPS, Mourão DC, de Moraes RV, Prado AFBA, Winter OC, Exoplanets in binary star systems: on the switch from prograde to retrograde orbits, Celest. Mech. Dyn. Astron. 124, 73-96 (2016). http://dx.doi.org/10.1007/s10569-015-9650-3
  4. Farago F, Laskar J, High-inclination orbits in the secular quadrupolar three-body problem, Mon. Not. Roy. Astron. Soc. 401, 1189-1198 (2010). http://dx.doi.org/10.1111/ j.1365-2966.2009.15711.x
  5. Ford EB, Kozinsky B, Rasio FA, Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385-401 (2000). http://dx.doi.org/10.1086/308815
  6. Ford EB, Kozinsky B, Rasio FA, Erratum: "secular evolution of hierarchical triple star systems"(ApJ 535, 385 [2000]), Astrophys. J. 605, 966-966 (2004). http://dx.doi.org/10.1086/382349
  7. Giuppone CA, Leiva AM, Correa-Otto J, Beauge C, Secular dynamics of planetesimals in tight binary systems: application to $\gamma$-Cephei, Astron. Astrophys. 530, A103 (2011). http://dx.doi.org/10.1051/0004-6361/201016375
  8. Haghighipour N, Dynamical stability and habitability of the $\gamma$ Cephei binary-planetary system. Astrophys. J. 644, 543-550 (2006). http://dx.doi.org/10.1086/503351
  9. Harrington RS, Dynamical evolution of triple stars, Astron. J. 73, 190-194 (1968). http://dx.doi.org/10.1086/110614
  10. Heppenheimer TA, On the formation of planets in binary star systems, Astron. Astrophys. 65, 421-426 (1978).
  11. Kley W, Nelson RP, Planet formation in binary stars: the case of $\gamma$ Cephei, Astron. Astrophys. 486, 617-628 (2008). http:// dx.doi.org/10.1051/0004-6361:20079324
  12. Lee MH, Peale SJ, Secular evolution of hierarchical planetary systems, Astrophys. J. 592, 1201-1216 (2003). http://dx.doi. org/10.1086/375857
  13. Leung GCK, Lee MH, An analytic theory for the orbits of circumbinary planets, Astrophys. J. 763, 107-119 (2013). http://dx.doi.org/10.1088/0004-637X/763/2/107
  14. Li G, Naoz S, Holman M, Loeb A, Chaos in the test particle eccentric Kozai-Lidov mechanism, Astrophys. J. 791, 86 (2014). http://dx.doi.org/10.1088/0004-637X/791/2/86
  15. Liu B, Munoz DJ, Lai D, Suppression of extreme orbital evolution in triple systems with short-range forces, Mon. Not. Roy. Astron. Soc. 447, 747-764 (2015). http://dx.doi. org/10.1093/mnras/stu2396
  16. Marzari F, Weidenschilling SJ, Barbieri M, Granata V, Jumping Jupiters in binary star systems, Astrophys. J. 618, 502-511 (2005). http://dx.doi.org/10.1086/425976
  17. Michaely E, Perets HB, Secular dynamics in hierarchical threebody systems with mass loss and mass transfer, Astrophys. J. 794, 122 (2014). http://dx.doi.org/10.1088/0004-637X/794/2/122
  18. Mustill AJ, Villaver E, Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs, Astrophys. J. 761, 121 (2012). http://dx.doi.org/10.1088/0004-637X/761/2/121
  19. Naoz S, Farr WM, Lithwick Y, Rasio FA, Teyssandier J, Secular dynamics in hierarchical three-body systems, Mon. Not. Roy. Astron. Soc. 431, 2155-2171 (2013a). http://dx.doi. org/10.1093/mnras/stt302
  20. Naoz S, Kocsis B, Loeb A, Yunes N, Resonant post-Newtonian eccentricity excitation in hierarchical three-body systems, Astrophys. J. 773, 187 (2013b). http://dx.doi.org/10.1088/0004-637X/773/2/187
  21. Raghavan D, McAlister HA, Henry TJ, Latham DW, Marcy GW, et al., A survey of stellar families: multiplicity of solartype stars, Astrophys. J. 190, 1-42 (2010). http://dx.doi. org/10.1088/0067-0049/190/1/1
  22. Rahoma WA, Orbital elements evolution due to a perturbing body in an inclined elliptical orbit, J. Astron. Space Sci. 31, 199-204 (2014). http://dx.doi.org/10.5140/JASS.2014.31.3.199
  23. Rahoma WA, Deleflie F, Effects of $J_2$ perturbation on geometrical relative motion, Indian J. Sci. Tech. 7, 968-974 (2014).
  24. Rahoma WA, Abd El-Salam FA, Ahmed MK, Analytical treatment of the two-body problem with slowly varying mass, J. Astrophys. Astron. 30, 187-205 (2009). http:// dx.doi.org/10.1007/s12036-009-0012-y
  25. Schwarz R, Funk B, Bazso A, On the possibility of habitable Trojan planets in binary star systems, Orig. Life Evol. Biosph. 45, 469-477 (2015). http://dx.doi.org/10.1007/ s11084-015-9449-y
  26. Takeda G, Kita R, Rasio FA, Planetary systems in binaries. I. dynamical classification, Astrophys. J. 683, 1063-1075 (2008). http://dx.doi.org/10.1086/589852
  27. Thebault P, Marzari F, Scholl H, Planet formation in the habitable zone of $\alpha$ Centauri B, Mon. Not. Roy. Astron. Soc. Lett. 393, L21-L25 (2009). http://dx.doi.org/10.1111/j.1745-3933.2008.00590.x
  28. Veras D, Wyatt MC, Mustill AJ, Bonsor A, Eldridge JJ, The great escape: how exoplanets and smaller bodies desert dying stars, Mon. Not. Roy. Astron. Soc. 417, 2104-2123 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.19393.x