DOI QR코드

DOI QR Code

고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes

  • Lee, Ki Rim (School of Geospatial Information, Kyungpook National University) ;
  • Lee, Won Hee (School of Convergence & Fusion System Engineering, Kyungpook National University)
  • 투고 : 2016.10.01
  • 심사 : 2016.10.20
  • 발행 : 2016.10.31

초록

기존의 정사영상 제작에서는 고가의 항공기를 이용한 대규모 지역에 대해서만 경제적인 정사영상을 제작할 수 있었으며, 지형지물에 대해 빠르게 변화를 갱신하지 못한다는 단점이 있었다. 하지만 최근 무인항공기(UAV: Unmanned Aerial Vehicle)가 빠른 속도로 발전되고, GPS와 IMU 등의 다양한 센서 탑재로 고가의 항공사진측량을 대체할 수 있다는 평가를 받고 있다. 무인항공기를 이용하여 소규모 지역에 대한 정사영상 지도를 제작 할 경우 신속하게 공간정보를 갱신할 수 있다는 장점을 가지고 있지만 기존 연구의 경우 같은 고도의 영상으로만 정사영상을 제작하여 자료의 중복성과 자료 갱신에 대한 단점이 있다. 본 연구에서는 소규모 경사지역을 대상으로 저가용 무인항공기의 고도가 다른 영상을 통해 정사영상 및 DEM(Digital Elevation Model)을 제작하였다. 검사점에 의한 수평 및 수직 성분의 RMSE는 σh = 0.023m, σv = 0.049m 의 정확도를 보여 국토지리정보원 수치지도 1/500 축척의 RMSE와 최댓값 허용범위를 만족하였다. 이를 통해 고도가 다른 영상을 이용하여 높은 정확도의 정사영상을 제작할 수 있었으며, 다양한 고도의 자료를 통해 자료의 중복성을 줄이고, 신속하게 공간정보를 제공할 수 있음을 확인하였다.

Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

키워드

참고문헌

  1. Choi, Y.W., You, J.H., and Cho, G.S. (2015), Accuracy analysis of UAV data processing using DPW, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 4, pp. 3-10. (in Korean with English abstract)
  2. Goncalves, J.A. and Henriques, R. (2015), UAV photogrammetry for topographic monitoring of coastal areas, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 104, pp. 101-111. https://doi.org/10.1016/j.isprsjprs.2015.02.009
  3. Han, Y.K., Kim, Y.I., Han, D.Y., and Choi, J.W. (2013), Mosaic image generation of AISA eagle hyperspectral sensor using SIFT method, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 2, pp. 165-172. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.2.165
  4. Kim, J.Y., Lee, J.B., and Yeom, J.H. (2016), Detection of updating feature in building layer of korea address information system using UAV image, Journal of the Korean Society of Cadastre, Vol. 32, No. 1, pp. 121-131. (in Korean with English abstract)
  5. Kim, D.I., Song, Y.S., Kim, G.H., and Kim, C.W. (2014), A study on the application of UAV for korean land monitoring, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, pp. 29-38. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.1.29
  6. Lee, S.B. (2013), Accuracy evaluation of the height determined by network-RTK VRS positioning, Journal of the Korean Society for Geospatial Information Science, Vol. 21, No. 4, pp. 55-63. (in Korean with English abstract)
  7. Lee, Y.C. (2015), Assessing the positioning accuracy of high density point clouds produced from rotary wing quadrocopter unmanned aerial system based Imagery, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 2, pp. 39-48. (in Korean with English abstract)
  8. Lee, S.J. and Choi, Y.S. (2016), Comparison of topographic surveying results using a fixed-wing and a popular rotary-wing unmanned aerial vehicle (drone), Tunnel & Underground Space, Vol. 26, No. 1, pp. 24-31. (in Korean with English abstract) https://doi.org/10.7474/TUS.2016.26.1.024
  9. Lee, G.S., Choi, Y.W., Jung, K.S., and Cho, G.S. (2015), Analysis of the spatial information accuracy according to photographing direction of fixed wing UAV, Journal of the Korean Cadastre Information Association, Vol. 17, No.3, pp. 141-149. (in Korean with English abstract)
  10. Lim, Y.S., La, P.H., Park, J.S., Lee, M.H., Pyeon, M.W., and Kim, J.I. (2015), Calculation of tree height and canopy crown from drone images using segmentation, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 6, pp. 605-613. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.6.605
  11. Lowe, D.G. (2004), Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  12. Park, C.H., Choi, K.A., and Lee, I.P. (2016), Lane extraction through UAV mapping and its accuracy assessment, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 11-19. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.11
  13. Park, J.H. and Lee, W.H. (2016), Orthophoto and DEM generation in small slope areas using low specification UAV, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 3, pp. 283-290. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.3.283
  14. Ruzgiene, B., Berteska, T., Cecyte, S., Jakubauskiene, E., and Aksamitauskas, V.C. (2015), The surface modelling based on UAV photogrammetry and qualitative estimation, Measurement, Vol. 73, pp. 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  15. Sung, S.M. and Lee, J.O. (2016), Accuracy of parcel boundary demarcation in agricultural area using UAV-photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 53-62. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.53
  16. Uysal, M., Toprak, A.S., and Polat, N. (2015), DEM generation with UAV photogrammetry and accuracy analysis in sahitler hill, Measurement, Vol. 73, pp. 539-543. https://doi.org/10.1016/j.measurement.2015.06.010
  17. Yun, B.Y. and Lee, J.O. (2014), A study on application of the UAV in Korea for integrated operation with spatial information, Journal of the Korean Society for Geospatial Information Science, Vol. 22, No. 2, pp. 3-9. (in Korean with English abstract)
  18. Yun, B.Y., Lee, J.O., and Lee, D.S. (2016), A study on the enactment of UAV standard estimating for applying in spatial information area, Journal of the Korean Cadastre Information Association, Vol. 18, No. 1, pp. 123-132. (in Korean with English abstract)

피인용 문헌

  1. 국공유지 실태조사 활용을 위한 UAV 영상의 정확도 및 경제성 평가 vol.35, pp.3, 2017, https://doi.org/10.7848/ksgpc.2017.35.3.175
  2. 자율주행 지원을 위한 고해상도 무인항공 영상처리 기반의 도로정보 추출 vol.18, pp.8, 2017, https://doi.org/10.5762/kais.2017.18.8.355
  3. 저가형 UAV 영상의 영상향상기법에 따른 결과 분석 vol.25, pp.3, 2017, https://doi.org/10.7319/kogsis.2017.25.3.003
  4. 항공정사영상의 상대적인 지상좌표 위치오차에 따른 색상보정 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.1.4
  5. UAV로 촬영한 수직 영상과 고경사 영상을 이용한 정사영상 및 3차원 모델링 비교 vol.25, pp.4, 2016, https://doi.org/10.7319/kogsis.2017.25.4.035
  6. Evaluating ortho-photo production potentials based on UAV real-time geo-referencing points vol.26, pp.6, 2016, https://doi.org/10.1007/s41324-018-0208-9
  7. 무인항공 영상을 이용한 공간정보 응용 시스템 활용 방안 vol.17, pp.2, 2016, https://doi.org/10.14400/jdc.2019.17.2.201
  8. Estimation Algorithm for Topographic Factor of Wind Load Based on Spatial Information vol.19, pp.6, 2016, https://doi.org/10.9798/kosham.2019.19.6.1
  9. 산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용 vol.17, pp.11, 2016, https://doi.org/10.14400/jdc.2019.17.11.189
  10. 무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정 vol.37, pp.6, 2016, https://doi.org/10.7848/ksgpc.2019.37.6.499