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Abstract 

 

To cope with the complex electromagnetic environment of wireless communication systems, 
anti-jamming decision methods are necessary to keep the reliability of communication. Basing 
on the rule-reduced genetic algorithm (RRGA), an anti-jamming decision method is proposed 
in this paper to adapt to the fast channel variations. Firstly, the reduced decision rules are 
obtained according to the rough set (RS) theory. Secondly, the randomly generated initial 
population of the genetic algorithm (GA) is screened and the individuals are preserved in 
accordance with the reduced decision rules. Finally, the initial population after screening is 
utilized in the genetic algorithm to optimize the communication parameters. In order to 
remove the dependency on the weights, this paper deploys an anti-jamming decision objective 
function, which aims at maximizing the normalized transmission rate under the constraints of 
minimizing the normalized transmitting power with the pre-defined bit error rate (BER). 
Simulations are carried out to verify the performance of both the traditional genetic algorithm 
and the adaptive genetic algorithm. Simulation results show that the convergence rates of the 
two algorithms increase significantly thanks to the initial population determined by the 
reduced-rules, without losing the accuracy of the decision-making. Meanwhile, the 
weight-independent objective function makes the algorithm more practical than the traditional 
methods. 
 

Key Words: anti-jamming, rough set theory, genetic algorithm, objective function 
 
This work is supported by National Natural Science Foundation of China under grant No.61301103. 
 
http://dx.doi.org/10.3837/tiis.2016.09.028                                                                                                          ISSN : 1976-7277 



4550                                            Hui et al.: A Fast Anti-jamming Decision Method Based on the Rule-Reduced Genetic Algorithm 

1. Introduction 

In the last two decades, the wireless communication technology has developed sharply with 
its wide applications related to government agencies, commercial areas and daily life of all 
aspects. Yet wireless communication systems are confronted with various artificial jamming 
due to their open characteristic. For a long time, spread-spectrum communication is one of the 
major technical methods for anti-jamming in the frequency domain. With the increasingly 
scarce of spectrum resources, it becomes too expensive to occupy more spectrums for a larger 
jamming tolerance.  

The cognitive radio (CR) [1-3] offers a new approach to solve this problem. The capability 
of learning, reasoning and reconfiguring communication parameters is the core of CR research. 
In this case, the concepts of cognition and decision-making are introduced into communication 
anti-jamming field. This new method enables the system to choose proper communication 
parameters according to environmental changes so as to adapt to the jamming situation [4]. In 
[5], the bit error rate (BER) performance function and the normalized objective function are 
introduced to evaluate the quality of communication in detail. It proposes a weight-based 
method by combining different objective functions into a multi-objective function. 

Many decision-making methods based on evolutionary algorithms have been proposed. 
Those methods are typically based on the genetic algorithm (GA), which searches the 
optimized configuration in parameters’ configurable fields. However, an initial population 
needs to be generated randomly in the GA-based decision-making, which results in a very 
large search space in some cases. Traversing the entire space always requires quite long time, 
which then adversely affects the timely decision. Many scholars have improved the algorithm 
to compensate for this disadvantage [6-11].  

Tim Newman et. al. [6] proposes a new method to initialize the population. As a CR 
environment changes smoothly, the decision engine adds previous cognitive results to the next 
initial population. This algorithm reduces the decision-making time required and improves the 
real-time performance. Some further achievements have been reported to cope with other 
disadvantages of the traditional GA. For example, adaptive genetic algorithm（AGA）which 
employs adaptive crossover probability and mutation probability has been proposed in [7]. 
According to population evolutionary situation, the evolutionary strategy could adjust at any 
time to avoid the "premature" problem. In [8], the authors propose a simulated annealing 
genetic algorithm (SAGA), which employs simulated annealing to decide whether to accept 
the chromosome after crossover and mutation or not. By admitting some bad chromosomes 
into the next generation, this algorithm enlarges the range of parameter optimization, improves 
the climbing ability and the optimal range. Furthermore, [10] proposes a quantum genetic 
algorithm (QGA), which employs a quantum bit to encode chromosomes. It also introduces a 
quantum revolving door to update the population and to make the algorithm more nonlinear 
and non-deterministic, in conformity with the evolutionary model of the social intelligent 
community. This method works without a priori and historical experience. However, it 
requires the parameters affecting the performance of the system to be expressed as a more 
accurate formula. In addition, it always takes several iterations to converge to the optimal 
target value. Therefore, the convergence rate is slow and the computational cost is quite large. 

Considering the shortcomings of the existing genetic algorithms, this paper proposes an 
algorithm named Rule-Reduced Genetic Algorithm (RRGA) by combining decision rules with 
GA [12-13]. The idea of reduced-rules is introduced into the algorithm to improve the 
convergence rate of GA, as well as to decrease the complexity of the algorithm and ensure 
timely decisions. The innovation of the proposed algorithm is as follows. Firstly, by 
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condensing the decision space according to a certain criterion without influencing the decision 
results, the order of the decision space can be reduced from 

410 to 210 . This change reduces the 
time overhead for searching the decision space. Secondly, the RS theory that can be done 
offline without any a priori is employed to extract decision rules from the condensed space. 
Thirdly, by introducing these rules into the initialization of GA, the convergence rate can be 
improved remarkably. Finally, the anti-jamming decision objective function which 
maximizing the normalized transmission rate at the expense of minimizing the normalized 
transmitting power is applied so as to reduce the dependency on the weights. 

Compared with the existing algorithms, pre-processing is necessary for the RS theory employed 
in the decision-making space reduction, which requires additional calculations. Fortunately, the 
pre-processing can be completed in advance and stored, and then the impact on the overall system 
complexity is negligible. 

The remainder of the paper is organized as follows. The anti-jamming decision-making 
model is introduced in Section 2. The reduction of the decision space based on the RS theory 
and the extraction of decision rules are presented in Section 3. The objective function and 
RRGA algorithm are proposed in Section 4, where two genetic algorithms named traditional 
genetic algorithm and the adaptive genetic algorithm are utilized respectively. In Section 5, the 
simulations and analysis are provided. Finally, the paper is concluded in Section 6. 

2. Anti-jamming Decision-making Model 
The anti-jamming decision-making based on the RRGA approach condenses the decision 
space of the system at first, and then applies the RS theory to obtain decision rules. On one 
hand, the decision engine improves the initial population according to these rules. On the other 
hand, it identifies the objective function according to the parameters of the electromagnetic 
environment (such as the signal-to-jamming ratio (SJNR) of each channel), user’s 
requirements (such as the BER threshold), and the decision criterion. The GA searches 
throughout the decision space until it acquires the proper parameters. The anti-jamming 
decision-making model based on jamming cognitive is shown in Fig. 1. 

According to the anti-jamming decision-making model shown in Fig. 1, we have the 
following assumptions: 

(1) The number of modulation modes is 1M , all these modes constitute a modulation 
subspace which is defined as { }11 2, ,...,Mod MMod Mod Mod

. 
(2) The number of encoding rate is 2M , all these rates constitute an encoding subspace that is 

defined as { }21 2, ,...,Cod MCod Cod Cod
. 

(3) The minimum transmitting power is minsP , while the maximum transmitting power 
is maxsP . The number of power grade is PN . All these grades constitute a power subspace that 

is defined as { }1 2, ,...,
ps s sNP P PPow  . 

(4) The system has K  non-overlapping channels, where each communication occupies one 
channel. All these channels constitute a channel subspace that is defined as 

{ }1 2, ,...,CH KCH CH CH
. 

(5) Use SJNR to represent the jamming state of the Kth channel. Each channel’s SJNR is 
decided by the jamming environment, which is out of control. All the jamming states 
constitute state space of decision-making defined as { (1), (2),..., ( )}Kγ γ γ γ= . All the states are 
to be provided by the cognitive model, which is known a priori. 
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(6) The system’s constraints are obtained from the user requirement Ureq , which defines the 
objective function together with the decision criterion. In this paper, user requirement is to 
keep the BER below a pre-defined threshold. The decision criterion is to maximize the 
normalized transmission rate at the expense of minimizing the normalized transmitting power. 

electromagnetic 
environment

condense system’s 
decision space

communication 
parameters

decision 
objectives

user
requirements

RS theory

decision engine 
based on RRGA

objective 
function

GA based on rules

the set of 
decision 

rules

 
Fig. 1. Anti-jamming decision-making model 

 
Therefore, the decision space can be defined as Ψ × × ×Mod Cod Pow CH , which is the 

Cartesian product of all the parameters. The number of the space states is 1 2( )pM M N K . For 
example, if there are 4 modulation schemes, 3 encoding schemes, 80 channels and 20 power 
grades, theoretically the total number of decision space states is 4 3 20 80 19200× × × = . Each 
decision-making is to choose the most suitable combination of the parameters 

, , ,opt s optMod Cod P CHΨ =< > , which decides the behavior of the decision engine in one 
communication under some certain criteria in the decision space Ψ . 

3. Anti-Jamming Decision Rules with Condensed Decision Space 
In view of the advantage that the RS theory needs no any a priori knowledge, it can be applied 
to wireless communication systems to solve the decision-making problems where no a priori 
information is available. And the RS theory is capable of dealing with uncertainty and 
inaccuracy issues. 

3.1 Condensed decision space 

3.1.1 Reduction of modulation and coding combinations 
Since there are 1M  kinds of modulation and 2M  encoding schemes, the number of valid 
transmission rates would be 1 1 2K M M= . Because the differences between the practical 
transmission rate of some modulation-coding combinations lead to poor BER performance or 
inappropriate SJNR interval, we can abandon certain combinations. We select 

2 2 1( )K K K< combinations which have proper SJNR interval, the scale of the decision space 
condensed from 1 pK N K× ×  to 2 pK N K× × . 
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3.1.2 Reduction of alternative channels 
Generally speaking, the large number of alternative channels also leads to the large decision 
space [12]. Therefore, we can further condense the space by aggregating individual channel 
states; this aggregation allows the system to make decisions according to several channel 
states instead of every channel state. After acquiring the best channel state, we select the ideal 
channel from channel set that corresponds to the channel state. The details are as follows: 

As we supposed that the channel interference state ( )kγ is arbitrary, and it goes against the 
state aggregation. Therefore, we employ the discrete channel state instead of the original 
randomly generated channel state, according to Eq. (1) and (2). 

 

minmin ( )( ) max( )R kR k γ=                                                   (1) 

maxmax ( )( ) max( )R kR k γ=                                                   (2) 
 

where min ( )R k is the maximum transmission rate that can be achieved under the constraints of 

min ( )kγ  and user’s BER (e.g. 410−≤ ). max ( )R k is the maximum transmission rate that can be 
achieved under the constraints of max ( )kγ and user’s BER. So the channel state of the system in 
k  can be expressed as [ ]min max( ) ( ), ( )Rc k k kγ γ= . 

After the discretization of channel states, the channels with the same state are aggregated 
into one channel subspace. Eventually, all the k channels can be aggregated into G ( 1 1G K≤ + ) 
channel subspaces 1ACH , 2ACH , … , GACH . Each channel state contains 3K ( 30 K K≤ ≤ ) 
channels. In addition, channel subspace AiCH  can be expressed as: 

 
=A ACH CHi j φ , i j∀ ≠                                                 (3) 

1 2A A ACH CH CH CHG = 
                                          (4) 

 
It should be noted that, all the channels with very low SJNR are aggregated into one channel 

subspace, whose state is recorded as 0. 
Thanks to the channel state aggregation, the selection of anti-jamming decision-making 

changes into the selection of channel subspace. And then the decision space is further reduced 
to 2 2 3( 1)pK N K K+ + , in which 3K  stands for the number of channels in the selected channel 
state ( 3K K≤ ). For example, suppose 80K = , 20pN = and 2 6K = , all these channels 
aggregate into 2 1 7K + =  channel states. If choosing a channel state, which contains 23 
channels, the decision space reduced from 4 3 20 80 19200× × × =  to 6 20 7 23 863× × + = . That is, 
its order decreases from 410  to 210 , condensed more than 95%.  

So far, the scale of the decision space has been condensed dramatically. Suppose the space 
contains N decision schemes. If for each scheme we define the modulation mode, the encoding 
rate, and the channel state as conditional attributes, while the transmitting power is the 
decision attribute, then we get an initial decision table. This table has two problems: 1) The 
probable existence of some relevance between different conditional attributes will cause 
attribute confusion during the decision-making, and then decrease the distinctiveness of the 
derived rules. 2) The scale of the decision table is still too large, as the rules derived directly 
are not universal. Therefore, it is necessary to reduce the conditional attributes and their 
values. 
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3.2 Reduction rule attributes 
This work applies the RS theory [13] to reduce the decision space to obtain the minimized 
decision rules. We use a tetrad DT ( , , , )U A V f= to represent the decision system, where 

1 2{ }, ,... NU x x x= stands for the decision space, that is, the set of all attributes. A C D=  is a 
set of the whole attributes. 1 2 3{ , , }C C C C=  represents conditional attributes, while { }D d=  
stands for the decision attribute. Here, we define the transmitting power as a decision attribute;  

aa A
V V

∈
=


is a set of values for all the attributes, in which aV is the value domain of attribute 
a ; f is the mapping function from U A×  to V , which sets the value for every attribute of 
each scheme. 

3.2.1 Definitions 
For convenience, some definitions related to the RS theory are presented . 
Definition 1: Division and Equivalence Class 

Assuming that P A⊆  is a random attribute subset of the decision system, if the whole 
system is traversed and all the schemes which have an equal attribute value to any attribute in 
the subset P are put in a set, all those sets form a set cluster, namely a division of  U under P , 
This can be expressed algebraically as: 

Given x U∈ , y U∈ , P A⊆ for a P∀ ∈ , if x , y satisfies with 
 

( , ) ( , )f x a f y a=                                                        (5) 
 

Then, sets of y , y in (5) constitute the division of U under P , denoted as /U P , y is the 
equivalence class of x , denoted as [ ]Px . 
Definition 2: Positive Domain 

Assuming that P C⊆ is a random conditional attribute subset of decision system, and D is 
the decision attribute, if iY is a subset in the set cluster /U D , at the same time, it is a set in the 
set cluster /U P , then, all these iY are termed the P positive domain of D ,denoted as ( )PPOS D . 
This can be expressed like: 

 
{ }POS ( ) / | /P i iD Y U P Y U D= ∈ ⊆


                                         (6) 
 

Definition 3: Core 
Based on definition 2, for any individual ip P∈ , if ip  satisfies POS ( ) POS ( )

iP p PD D− ≠ , ip is 
necessary for D within the range of P , all these ip constitute a set called the relative- D -core 
of P , denoted as CORE ( )D P . 
Definition 4: Significance 

Assuming that C  is the set of the whole conditional attributes, B C∀ ⊆ and C Bα∀ ∈ − , 
define 

 
{ }card( / ( ) card( / ))

sig( , ; )=
card( )

U B U B
B C

U
α

α
−

                                 (7) 
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as the significance of the attribute α  to subset B , in which card( )X  is the number of the 
individuals in set X . 

3.2.2 Attributing reduction algorithm based on RS theory 
The procedure of the algorithm is as follows: 

Input: Elements of the decision system: , , ,U A V f . 
Output: The reduction of C  with regard to the decision attribute D  , denoted as RED ( )D C . 
Step 1: Calculate the division of U  under the set of condition attribute C with definition 1, 

which means classifying all the schemes according to C , suppose the total number of the 
resulting class is 1H , i.e. 

11 2/ { , ,..., }HU C X X X= . 
Step 2: Calculate the division of U under decision attribute D , suppose the total number of 

the resulting class is 2H , i.e. 
21 2/ { , ,..., }HU D X X X= . 

Step 3: Remove one condition attribute iC C∈  at a time, in succession. Recalculate the 
division of U under the other conditions, suppose the corresponding number of the class is iL , 
i.e. 1 2/ ( ) { , ,..., }

ii LU C C X X X− = . 
Step 4: Calculate the D  positive domain of the set of condition attributes C  and ( )iC C∀ −  

with definition 2, and compare every POS ( )
iC C D− to POS ( )C D according to definition 3, if the 

two are not equal, condition attribute iC is necessary to D , all these necessary condition 
attributes constitute the relative- D -core of C .Suppose the number of the attribute in the core 
is l , i.e. 1CORE ( ) { ,..., }D lC C C= . 

Step 5: If the number of the individuals in the set CORE ( )D C  equals to the number of 
individuals in set C , let RED (C) CORE ( )D D C=  and go to Step 6. Otherwise, calculate the 
significance of the individuals that appear in the difference set between C , CORE ( )D C  and D . 

mC is the one that has the largest significance value. Let RED (C) CORE ( )D m DC C= 
. 

Step 6: Output RED (C)D .  

3.3 Attributing value reduction algorithm based on RS theory 
 Now the decision system becomes DT ( )U,A ,V, f′ ′= , ( )DA RED C D′ =  . Set each ordered pair 
of conditional attribute and its value to be a category. Several categories compose a category 
cluster. 

For the -i th  scheme, all the conditional attribute and its value constitute a category cluster 

1 1{( , ),..., ( , )}, 1, 2...., , card(RED ( ))i i S iS DF C v C v i N S C′ ′= = = . In which, jC ′ is the -j th  condition 
attribute in RED ( )D C , ijv is its value of the -i th  scheme. Adding decision attribute and its 
value to each category cluster, we define every scheme as one decision rule. The algorithm 
proceeds as follows: 

Input: Elements of the current decision system: , , ,U A V f . 
Output: A set of simplified decision rules *R . 
Step1: Change each category cluster into corresponding decision rule ir , i.e. 

1 1: ( , ) ... ( , ) ( , )i i S iS ir C v C v d d′ ′∧ ∧ → , in which, “ ∧ ”represents “and”, “→ ”represents “derive”, 

id is the value of decision attribute of -i th decision scheme. 
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Step2: For each ir , obtain a new rule ir′ after removing ( , )j ijC v′ , some of the schemes also 

need to remove the attribute value that jC ′corresponds to. If there are no rules which have the 
same conditional attributes but a different decision value with ir , the value ijv  corresponding 

to attribute jC ′ is not necessary for the decision attribute D , and then we can remove it. Apply 
to all the condition attribute values in ir to obtain a reduction of ir as *

ir . Apply this method 
while traversing all the decision rules. 

Step3: Output *R . 
At this time, we have the simplified decision rules, which minimize the transmitting power 

under the BER constraint. 
It shall be noted that the decision rules can be extracted offline, thus brings no additional 

computational burden during the system operation. 

4. Objective Function Design and RRGA Algorithm 
For the anti-jamming communication system shown in Fig. 1, the most common decision 
objectives are minimal transmitting power, maximal transmission rate, and minimal BER. All 
the objectives interfere with each other and cannot reach optimum for all of them at the same 
time. Currently, the GA-based methods always transform the above three decision objectives 
into objective functions respectively, and then weight them. However, without having a 
scientific foundation to determine the weights, the choice of weights depends on a certain 
subjectivity. Furthermore, this differs greatly from the actual situation of a communication 
system. For these reasons, we design a new objective function according to the following 
considerations. Try to meet the user’s BER requirement, minimize the transmitting power first, 
and on that base maximize the transmission rate. In this case, the resulting objective function is 
closer to the requirements of a practical application. After designing the objective function, 
combine the decision rules in Section 3 with the traditional genetic algorithm [6, 12] or 
adaptive genetic algorithm [7], and adaptively select the transmitting power, the channel state, 
the modulation mode and the coding rate. 

4.1 Objective function 
In this paper, modulation schemes of PSK, QAM and LDPC with different orders are 
employed. However, when the BER is under certain threshold (i.e. waterfall region), the index 
value of the BER of each combination has an approximately linear relationship with the 
corresponding SJNR. Thus, a straight-line approximation is used to match this curve to get a 
simple BER formula. The normalized transmitting power norm powerf − and the normalized 
transmission rate norm putf −  are defined as follows respectively: 
 

max

i
norm power

p
f

p− =                                                         (8) 

2

max 2 max

C log
log

i i
norm put

M
f

C M−

×
=

×
                                                (9) 

 
where ip  represents the transmitting power of the -i th scheme and maxp represents the 
maximum transmitting power. Ci  represents the coding rate of the -i th scheme and iM  
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represents the modulation mode of the -i th scheme, maxC represents the maximum coding rate, 
while maxM represents the maximum modulation mode. Then the objective function f  can be 
defined as: 
 

max

min

put

power

f
f

f
−

−

=                                                           (10) 

 
where min powerf −  represents the minimum of norm powerf −  the algorithm can find under the 
requirement of a pre-defined target BER, while max putf −  represents the maximum of norm putf −  
the algorithm can find under the condition of min powerf − . The target of anti-jamming 
decision-making procedure is to adapt the communication parameters to maximize f  as 
defined in Eq.(10). 

4.2 Adaptive genetic algorithm  
The procedure of the traditional GA (Tra GA) contains coding, fitness calculation, 

selection, crossover and mutation [12]. But adaptive genetic algorithm [7] (AGA) has 
proportional selection. It is the abbreviation of genetic algorithm with adaptive crossover and 
mutation operation. The convergence of the genetic algorithms primarily depends on their core 
operations of crossover and mutation operator because crossover operator offers the global 
search capability and mutation operator offers the local search capability. AGA adjusts the 
crossover and mutation rate to improve the traditional genetic algorithm. 

 
_ max _ min '

_ max

'
_ max

( )* ,
max

                                       ,

c c
c avg

c

c avg

p p
p iter f f

p it
p f f

−
− >= 

 ≤

                            (11) 

_ max _ min '
_ min

'
_ min

( )* ,
max

                                        ,

m m
m avg

m

m avg

p p
p iter f f

p it
p f f

−
− >= 

 ≤

                          (12) 

 
where cp represents crossover probability, _ maxcp  and _ mincp  are the maximum and minimum 
crossover probability respectively, mp represents mutation probability, _ maxmp and _ minmp  are 
the maximum and minimum mutation probability respectively, maxit  represents the maximum 
generation, iter represents current generation, avgf represents the average fitness of population, 
f ′ represents the bigger fitness in two individuals to crossover, f  represents the fitness in 

individual to mutation. 
Eq. (11) and (12) show that if the individual is poor (that is, fitness value is less than the 

average fitness), it would give larger crossover probability and smaller mutation probability; if 
the individual is good (fitness value is greater than the average fitness value), the crossover 
probability and the mutation probability will be adjusted. This measure contributes to protect 
the individual an effective model of good, easy to find the global optimum and prevent 
"premature" phenomenon. 

In addition, comparison of individual fitness values is increased or decreased after crossover 
and mutation. Compared with the traditional algorithm, this measure ensures that the new 
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individual generated by genetic manipulation is excellent and accelerates the speed of the 
evolution of the genetic algorithm so that it can avoid the evolution of individual 
self-degradation. 

4.3 RRGA Algorithm 
In this paper, we encode working parameters in the form of binary, and then connect them to 

form a chromosome. After generating the initial population randomly, we screen it according 
to the decision rules, by utilizing the objective function as the criterion to choose superior ones. 
Then the superior ones are crossed over, recombined, and mutated. The process is iterated over 
the whole population. In this paper, we apply the form of roulette to choose the superior 
chromosomes, and then use the single-point crossover and basic-point mutation method. The 
population evolves during iteration, and generates chromosomes, which are close to the 
optimum gradually. The algorithm flow chart is shown in Fig. 2. 

Create and 
compress the 

decision space

Start

Based on reduction 
rules to establish 
initial population

Calculate the population 
of each individual object 

function value

Selection, crossover 
and mutation, retain 
qualified individuals

insert child 
into its father 

generation

Termination 
condition is met

End

Yes

No

 
Fig. 2. Flow chart of RRGA algorithm 
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The procedure of RRGA is as follows: 
Step 1: Set up the decision space, condense it under the condition of not influencing the 

decision result. 
Step 2: Reduce the decision space and then obtain the simplified decision rules. 
Step 3: Initialize the population according to the value range of each parameter; initialize 

the iteration counter. 
Step 4: Screen the population according to the rules obtained in Step 2, acquiring a new 

population with all feasible schemes. 
Step 5: Calculate the objective value of every chromosome according to Eq. (8), (9), and 

(10). 
Step 6: Choose several chromosomes, which have superior objective value, then crossover, 

recombine, mutate them, and get child generation. Calculate BER (bit error ratio) of each 
chromosome according to its SJNR (signal to jamming and noise ratio) and the BER formula, 
and then reserve those chromosomes, which conform to user’s BER requirement. Return to 
Step 5, get the objective value of every chromosome in child generation, insert superior child 
chromosome into its father generation, and get the complete population. 

Step 7: Complete one iteration, increment the iteration counter. If the number of iterations is 
smaller than a pre-defined threshold, return to Step 5 or Step 6, or stop the iteration. 

5. Simulations and analysis 
As shown in Table 1, six modulation-encoding combinations that have proper SJNR intervals 
are selected. 
 

Table 1. Proper modulation-encoding combinations 
 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 

Modulation Mode BPSK QPSK QPSK QPSK 8QAM 32QAM 
LDPC Encoding Rate 1/4 1/4 1/2 4/5 4/5 4/5 

Normalized Rate 0.0625 0.125 0.25 0.4 0.6 1.0 

 
The BER performance of the 6 types of modulation and coding combinations in the case of 

Rician channel is presented in Fig. 3. 
Each SJNR interval of modulation and coding scheme can be achieved from Fig. 3, and is 

shown in Table 2. 
In order to obtain the minimum decision rules, firstly a decision table shall be set up, in 

which the decision schemes are the permutations and combinations of the 6 combinations as 
shown in Fig. 3 and the 7 channel states as shown in Table 2. The target BER is 410− . We can 
obtain the channel state of each combination according to the BER target, and calculate the 
minimum value range of transmitting power. The minimum transmitting power is taken as the 
decision criterion. The value domain of each attribute in the decision table is expressed as 
follows: 1) Modulation mode 1( )C : BPSK , QPSK , 8QAM , 32QAM . 2) Encoding rate 

2( )C :1/ 4 ,1/ 2 , 4 / 5 . 3) Channel state 3( )C : the channel states under the condition of minimum 
transmitting power, as shown in Table 2. 4) Transmitting power ( )d : 0 ~ 20dBm , with intervals 
of 0.1dBm . Thus the size of decision space is 6 7 200 8400× × = . Part of the decision table is 
given in Table 3. Different from the approach in Table 1, the BER target can be reached by 
increasing the transmitting power in case the channel state is 0. 
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Fig. 3. BER performance of different combinations of LDPC coding and modulation 

 
Table 2. SJNR interval of each modulation-encoding combination 

BER State 0 State 1 State 2 State 3 State 4 State 5 State 6 
10-4 (-6,-4.4) [-4.4,-1.5) [-1.5,2.3) [2.3,5.8) [5.8,12.0) [12.0,19.5) ≥19.5 

10-5 (-6,-4.2) [-4.2,-1.2) [-1.2,2.7) [2.7,6.0) [6.0,12.3) [12.3,19.8) ≥19.8 
10-6 (-6,-3.8) [-3.8,-0.8) [-0.8,2.7) [2.7,6.3) [6.3,12.7) [12.7,20.1) ≥20.1 

 
Table 3. Anti-jamming decision table 

Schemes  U 
Condition Attribute C Decision 

Attribute D 
Modulation C1 Encoding C2 Channel C3 Power（dBm

） 
1 BPSK 1/4 0 (0,20) 

2,3,4,5,6,7 BPSK 1/4 1,2,3,4,5,6 0 
8 QPSK 1/4 0 (2.9,20) 
9 QPSK 1/4 1 (0,2.9] 

10,11,12,13,14 QPSK 1/4 2,3,4,5,6 0 
15 QPSK 1/2 0 (6.7,20) 
16 QPSK 1/2 1 (3.8,6.7] 
17 QPSK 1/2 2 (0,3.8] 

18,19,20,21 QPSK 1/2 3,4,5,6 0 
22 QPSK 4/5 0 (10.2,20) 
23 QPSK 4/5 1 (7.3,10.2] 
24 QPSK 4/5 2 (3.5,7.3] 
25 QPSK 4/5 3 (0,3.5] 

26,27,28 QPSK 4/5 4,5,6 0 
29 8QAM 4/5 0 (16.4,20) 
30 8QAM 4/5 1 (13.5,16.4] 
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Schemes  U 
Condition Attribute C Decision 

Attribute D 
Modulation C1 Encoding C2 Channel C3 Power（dBm

） 
31 8QAM 4/5 2 (9.7,13.5] 
32 8QAM 4/5 3 (6.2,9.7] 
33 8QAM 4/5 4 (0,6.2] 

34,35 8QAM 4/5 5,6 0 
36 32QAM 4/5 2 (17.2,20] 
37 32QAM 4/5 3 (13.7,17.2] 
38 32QAM 4/5 4 (7.5,13.7] 
39 32QAM 4/5 5 (0,7.5] 
40 32QAM 4/5 6 0 

By utilizing the method of Sec. 4, one can achieve the minimal decision table as shown in 
Table 4.  

 
Table 4. The minimal decision table 

Channel State 
3C  

Modulation Mode 
1C  

Encoding Rate 
2C  

Transmitting Power 
D  

0 BPSK —— (0,20) 
 QPSK 1/4 (2.9,20) 
 —— 1/2 (6.7,20) 
 QPSK 4/5 (10.2,20) 
 8PSK 4/5 (16.4,20) 
1 BPSK —— 0 
 QPSK 1/4 (0,2.9] 
 —— 1/2 (3.8,6.7] 
 QPSK 4/5 (7.3,10.2] 
 8QAM —— (13.5,16.4] 
2 —— 1/4 0 
 —— 1/2 (0,3.8] 
 QPSK 4/5 (3.5,7.3] 
 8QAM —— (9.7,13.5] 
 32QAM —— (17.2,20] 
3 —— 1/2 0 
 QPSK 4/5 (0,3.5] 
 8QAM —— (6.2,9.7] 
 32QAM —— (13.7,17.2] 
4 QPSK —— 0 
 8QAM —— (0,6.2] 
 32QAM —— (7.5,13.7] 
5 8QAM —— 0 
 32QAM —— (0,7.5] 
6 32QAM —— 0 
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The universal decision rules can then be achieved based on the core value table after the rules 
reduction, as given in Table 5. 

In practice, the interference information is reflected in the channel states. As can be seen 
from the decision rule set, if the channel state is determined, one can still minimize the 
transmitting power without making a choice of all the condition attributes. To some extent, it 
reduces the complexity of the decision-making process. For example, 

1 3( , ) ( 0) 0c BPSK c p∧ ≠ → =  (coverage rules 2-7). It means that as long as the selected channel is 
not 0 and when the modulation is BPSK , it can be determined without considering coding rate 
and that the minimum transmitting power is 0. 

For the convenience of binary-coded GA, it is supposed that the transmitting power is in the 
range 0 ~ 25.5dBm with a 0.1dBm interval, and encoded in 8-bit binary. The SJNR is 

4 ~ 21.5dBm−  with a 0.1dBm interval, and encoded with 8-bit binary as well. In addition to the 
6 modulation-encoding combinations shown in Fig. 2, and encoded with 3-bit binary. After 
generating the initial population, we screen it with the rules shown in Table 4 , and integrated 
the chromosomes that meet the rules into the new population, then evolved it to reach the 
optimum. The parameter settings in the GA are as follows: the selection probability is 0.8, the 
crossover probability is 0.8, the mutation probability is 0.01, the amount of population is 150 , 
and the maximum evolutionary generation is 300 . 

Table 5. Decision Rules 
Decision Rules Object Covered 

1 3, ) ( ,0) (0,5.6)C BPSK C pΛ → ∈（  {1} 

1 3( , ) ( 0) 0C BPSK C pΛ ≠ → =  {2,3,4,5,6,7} 

1 2 3( , ) ( ,1 / 4) ( ,1) (2.9,8.5)C QPSK C C pΛ Λ → ∈  {8} 

1 2 3( , ) ( ,1 / 4) ( ,1) (0,2.9]C QPSK C C pΛ Λ → ∈  {9} 

2 3( ,1 / 4) ( ,2) 0C C pΛ → =  {10} 

2 3( ,1 / 4) ( ,3) 0C C pΛ → =  {11} 

1 3( , ) ( ,4) 0C QPSK C pΛ → =  {12,19,26} 

1 3( , ) ( ,5) 0C QPSK C pΛ → =  {13,20,27} 

3( ,6) 0C p→ =  {14,21,28,35,40} 

2 3( ,1 / 2) ( ,0) (6.7,12.3)C C pΛ → ∈  {15} 

2 3( ,1 / 2) ( ,1) (3.8,6.7]C C pΛ → ∈  {16} 

2 3( ,1 / 2) ( ,2) (0,3.8]C C pΛ → ∈  {17} 

2 3( ,1 / 2) ( ,3) 0C C pΛ → =  {18} 

1 2 3( , ) ( ,4 / 5) ( ,0) (10.2,15.8)C QPSK C C pΛ Λ → ∈  {22} 

1 2 3( , ) ( ,4 / 5) ( ,1) (7.3,10.2]C QPSK C C pΛ Λ → ∈  {23} 

1 2 3( , ) ( ,4 / 5) ( ,2) (3.5,7.3]C QPSK C C pΛ Λ → ∈  {24} 

1 2 3( , ) ( ,4 / 5) ( ,3) (0,3.5]C QPSK C C pΛ Λ → ∈  {25} 

1 3( ,8 ) ( ,0) (16.4,22.0)C PSK C pΛ → ∈  {29} 

1 3( ,8 ) ( ,1) (13.5,16.4]C PSK C pΛ → ∈  {30} 

1 3( ,8 ) ( ,2) (9.7,13.5]C PSK C pΛ → ∈  {31} 

1 3( ,8 ) ( ,3) (6.2,9.7]C PSK C pΛ → ∈  {32} 

1 3( ,8 ) ( ,4) (0,6.2]C PSK C pΛ → ∈  {33} 
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1 3( ,8 ) ( ,5) 0C PSK C pΛ → =  {34} 

1 3( ,32 ) ( ,2) (17.2,21]C QAM C pΛ → ∈  {36} 

1 3( ,32 ) ( ,3) (13.7,17.2]C QAM C pΛ → ∈  {37} 

1 3( ,32 ) ( ,4) (7.5,13.7]C QAM C pΛ → ∈  {38} 

1 3( ,32 ) ( ,5) (0,7.5]C QAM C pΛ → ∈  {39} 
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Fig. 4. Comparison of Tra GA with RRGA1 
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Fig. 5. Comparison of AGA with RRGA2 
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Fig. 4 and Fig. 5 illustrate the design of objective function according to 4.1 and three 
operational parameters selection results that the anti-jamming decision-making system uses 
before and after the reduction in GA. In the implementation of RRGA, the use of the Tra GA is 
named RRGA1; the use of the AGA is named RRGA2.  

The overlapping part of the two curves in Fig. 4 and Fig. 5 means the same results are 
obtained using these two different methods. In the later stage of evolution, all curves tended to 
be stable, which means parameters-adaptation had reached the optimum. During the evolution, 
the value of a parameter changed within its domain and stayed on a fixed value eventually. The 
parameter-adaptation results are SJNR=21.4dBm; modulation-encoding combination is 
(32QAM, 4/5). 

The smaller number of evolutionary generation is needed to reach the same objective value, 
the higher the convergence rate of an algorithm. RRGA has a much higher convergence rate 
than the traditional GA, which results from screening the initial population by decision rules, 
and by decreasing the scale of the population on the condition of not losing feasible schemes. 
The computational complexity of GA is mainly in the calculation of objective function. AGA 
algorithm is mainly concentrated in the calculation of the objective function out of local 
optimal to overcome "premature". By designing a simplified objective function than those 
weight-based, the convergence rate can be improved significantly. 

 

 
Fig. 6. Normalized anti-jamming decision’s initial population in different algorithms 

 
The experiment is repeated for 100 times independently, and the objective function is 

optimized by using the Tra GA, AGA and two types of proposed RRGA (named RRGA1 and 
RRGA2). Tra GA parameters are normalized as the benchmark and the other algorithms 
(AGA, RRGA1 and RRGA2) are compared with it. 

Fig. 6 shows the comparison of population before and after the reduction. It can be seen 
from Fig. 6, the initial population of two genetic algorithms (Tra GA and AGA) is the same. 
That means the initial population of RRGA1 and RRGA2 are the same after using reduced- 
rules. The population after reduction is only the 43.754% of the original one. 

Fig. 7 and Fig. 8 are the comparison of generation and the average SJNR of each algorithm 
to Tra GA before convergence. 
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As can be seen from the results of the Fig. 7 and Fig. 8, when the objective function 
optimized, the results of RRGA1 and RRGA2 are much better than the Tra GA and AGA. The 
results demonstrated that compared with Tra GA and AGA, RRGA1 and RRGA2 have 
strongly improved in search efficiency and convergence speed. 

 

 
Fig. 7. Normalized evolution generation comparison chart 

 

 
Fig. 8. Normalized average SJNR comparison chart 

6. Conclusions 
In this paper, an anti-jamming decision-making method named RRGA is proposed, which 
combines the reduced decision rules and GA, and utilizes the adaptation of communication 
parameters. Without loss of generality, two typical genetic algorithms (Tra GA and AGA) are 
simulated separately. Simulation results prove that RRGA1 and RRGA2 are superior to Tra 
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GA and AGA in terms of search efficiency, convergence rate and algorithm stability. The 
proposed method condenses the decision space at first, then evolves the resulting population 
under the condition of not losing feasible schemes, which finally reduces the decision time 
under the condition of not influencing the decision accuracy. As in practice, each decision 
objective weight value cannot be given accurately, we also proposes the criteria of minimizing 
the normalized transmitting power and maximizing the normalized transmission rate, in the 
presence of the BER constraint. Therefore, it is also more applicable than traditional methods. 
In the future, other evolutionary algorithms can also be considered. 
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