
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, Sep. 2016                                          4467 
Copyright ⓒ2016 KSII 

All Phase Discrete Sine Biorthogonal 
Transform and Its Application in JPEG-like 

Image Coding Using GPU 
 

Rongyang Shan#, Xiao Zhou#*, Chengyou Wang, and Baochen Jiang 
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China 

[e-mail: sdusry@163.com, zhouxiao@sdu.edu.cn, wangchengyou@sdu.edu.cn, jbc@sdu.edu.cn] 
#These authors contributed equally to this work and should be considered co-first authors. 

*Corresponding author: Xiao Zhou 
 

Received February 1, 2016; revised June 6, 2016; accepted July, 2016;  
published September 30, 2016 

 

 

Abstract 
 

Discrete cosine transform (DCT) based JPEG standard significantly improves the coding 
efficiency of image compression, but it is unacceptable event in serious blocking artifacts at 
low bit rate and low efficiency of high-definition image. In the light of all phase digital 
filtering theory, this paper proposes a novel transform based on discrete sine transform (DST), 
which is called all phase discrete sine biorthogonal transform (APDSBT). Applying APDSBT 
to JPEG scheme, the blocking artifacts are reduced significantly. The reconstructed image of 
APDSBT-JPEG is better than that of DCT-JPEG in terms of objective quality and subjective 
effect. For improving the efficiency of JPEG coding, the structure of JPEG is analyzed. We 
analyze key factors in design and evaluation of JPEG compression on the massive parallel 
graphics processing units (GPUs) using the compute unified device architecture (CUDA) 
programming model. Experimental results show that the maximum speedup ratio of parallel 
algorithm of APDSBT-JPEG can reach more than 100 times with a very low version GPU. 
Some new parallel strategies are illustrated in this paper for improving the performance of 
parallel algorithm. With the optimal strategy, the efficiency can be improved over 10%. 
 
 
Keywords: Image coding, parallel computing, GPU, all phase discrete sine biorthogonal 
transform (APDSBT), discrete sine transform (DST) 

 
This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. 
ZR2015PF004), the National Natural Science Foundation of China (Grant No. 61201371), the promotive research 
fund for excellent young and middle-aged scientists of Shandong Province, China (Grant No. BS2013DX022), and 
the Fundamental Research Funds of Shandong University (Grant No. 2014ZQXM008). 
 
http://dx.doi.org/10.3837/tiis.2016.09.024                                                                                                          ISSN : 1976-7277 



4468         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

1. Introduction 

In image and video compression standards, like JPEG [1], MPEG-2, MPEG-4, H.264/AVC 
[2] and H.265/HEVC [3], discrete cosine transform (DCT) [4] is the core transform of these 
compression standards, which requires intensive and complex computations. In JPEG 
standard, the coding efficiency of image compression is improved significantly. However, the 
serious blocking artifacts caused by block-based DCT and low efficiency of high-definition 
image are unacceptable. To solve the above problems, some transforms have been proposed in 
recent years. Based on all phase digital filter (APDF) theory [5, 6], Hou et al. proposed all 
phase biorthogonal transform (APBT) [7] which can be used in JPEG scheme instead of the 
conventional DCT. Three matrices of APBT were deduced based on Walsh-Hadamard 
transform (WHT), DCT, and inverse DCT (IDCT) called APWBT, APDCBT, and APIDCBT, 
respectively. Experimental results show that the coding performance is improved. Another 
advantage is that the transform coefficients can be quantized uniformly. It could save the 
storage space of quantization table and reduce the computational complexity. In 2015, Fu et al. 
proposed windowed all phase biorthogonal transform (WAPBT) [8] based on windowed all 
phase digital filter (WAPDF) [9]. It attempts to find the best window function for most images, 
although it improves the quality of reconstructed image, the time and computational 
complexity of algorithm increase dramatically. Besides, there are other solutions focused on 
the content of image. Shape-adaptive DCT (SA-DCT) uses different compression ratios to 
different regions, the region of interest (ROI) is coded with low compression ratio, while 
background area is coded with high compression ratio [10]. But the ROI is hard to choose, and 
how to split the ROI effectively is still a problem. 

Apart from DCT, there are many transforms, such as DFT, WHT, and IDCT which are also 
used in the field of image/video processing. Discrete sine transform (DST) has received 
considerable interest recently. Especially in the latest video compression standard H.265 [3], 
DST is adopted to replace DCT in the 4×4 luma residual blocks for intra picture prediction 
modes [11]. In terms of complexity, the 4×4 DST-style transform is not much more 
computationally demanding than the 4×4 DCT-style transform, and it provides approximately 
1% bit-rate reduction in intra picture predictive coding [12]. 

Inspired by the DST and APBT, applying APDF theory [5, 6] to DST, we propose a new 
transform named all phase discrete sine biorthogonal transform (APDSBT) in this paper. With 
the new transform, the energy of the coefficients is more concentrated than DCT transform, so 
in Huffman coding part of image compression, it can bring a better performance in removing 
redundancy than DCT transform. Similar to APWBT, APDCBT, and APIDCBT, APDSBT 
can also be used in JPEG-like image coding scheme. Experimental results in the following 
show that APDSBT-based JPEG can achieve better performance than DCT-based JPEG 
(DCT-JPEG). On the subjective evaluation, the reconstructed image using the proposed 
algorithm performs better than that with DCT-JPEG. The blocking artifacts which appear in 
reconstructed image at low bit rate are reduced significantly. On the objective quality 
evaluation, the PSNR of the proposed APDSBT-JPEG is higher than that of DCT-JPEG. 
Besides, the quantization step is simple in the proposed algorithm in which the uniform 
quantization step is used instead of the complex quantization table used in DCT-JPEG. 

In image processing, the real-time performance is a standing challenge. For improving the 
accuracy and performance of algorithm, sometimes the intensive computational power is 
necessary. How to improve the efficiency of algorithm is one of the main problems in image 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4469 

processing. Methods for implementation involve the using of graphic processing units (GPU) 
or digital signal processors (DSP) [13]. In multimedia transmission system, for improving 
bandwidth utilization [14], the image and video transform system should be compressed by 
some compression standard. However, these algorithms are too complex to process the image 
data in real-time. Considering the massive computational cost of high-definition image or 
video, the serial algorithm based on central processing units (CPU) has been unable to satisfy 
the real-time requirement. However, GPU can handle this easily by adopting highly parallel 
architecture and operating at high frequency. 

Recently, GPU has evolved into an extremely powerful computation resource [15]. Prior to 
2003, the better computation efficiency could be obtained by improving the performance of 
processor. Researchers could get their algorithm performance improved easily by increasing 
CPU’s frequency. At present, the operating frequency of processor has hit a clock rate limit 
around 4 GHz. From architectural point of view, the technology faced bottle-neck, and it is 
very difficult to improve performance still by improving CPU’s frequency. Furthermore, if the 
clock rate is increased continuously, the benefit from computing efficiency can no longer 
cover the required electricity expenses. In order to obtain higher efficiency, multi-core 
technology has been introduced to CPU, and which can be easily found nowadays. Even the 
smallest modern computers, such as phones, are supported by the multi-core technology. For 
example, Apple A9 is a 64-bit system on chip (SoC) with four cores. Qualcomm Snapdragon 
810 has eight cores and MediaTek helio x20 has ten cores. Some researches of parallel 
computing are based on many-core processors [16, 17]. Yan and Zhang proposed a parallel 
framework to decouple motion estimation (ME) for different partitions on many-core 
processors, and compared with serial execution. Their work achieves more than 30 and 40 
times speedup for 1920×1080 and 2560×1600 video sequences. Parallel algorithm based on 
GPU also performs well. Parallel computation can improve the efficiency of the algorithm, 
and improve the real-time property of the system. 

Although CPU can continue to increase computational capacity by using multi-core 
technology, GPU has more computational power than CPU. Therefore, hybrid architecture of 
CPU and GPU is becoming more and more popular [18]. In today’s computer systems, 
heterogeneous architecture exists in servers and desktop computers, and also extends to 
portable and hand held devices. Even the technology can be found in some supercomputer. 
Titan supercomputer is the second-world’s fastest computer, located at the Oak Ridge national 
laboratory in Tennessee, which employs AMD Opteron CPUs in conjunction with Nvidia 
Tesla GPUs to improve computational power. Due to the development of multi-core CPU and 
GPU, the image processing based on parallel computation is becoming a hot area. Compute 
unified device architecture (CUDA) toolkit is released in 2007 by Nvidia, which makes 
parallel computation based on GPU easier than before [19]. GPU has more cores than CPU, 
and it can launch ten thousand threads at the same time, so the algorithm based on GPU can 
further improve the parallel degree of program. In the field of image processing, the parallel 
algorithm based on GPU is used widely [20-22]. Liu and Fan [23] designed parallel program 
for DCT in 2012. They used parallel DCT algorithm in JPEG coding, and the parallel DCT 
algorithm gains 20 times acceleration than serial DCT algorithm in the experiment. However, 
they did not make all parts of JPEG algorithm run on GPU. Holub et al. [24] proposed that 
GPU-accelerated DXT for low-latency network transmissions of HD, 2K, and 4K video in 
2013. In 2014, Alqudami and Kim developed an optimized parallel implementation of the 
forward DCT algorithm using OpenCL [25]. Shen et al. [26] implemented color space 
conversion for MPEG video encoding on GPU using DirectX to achieve 2~3 times 
acceleration. 



4470         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

We also focus on how JPEG image compression schemes can be efficiently implemented by 
using parallel computation based on GPU and used for low-latency high-resolution 
multimedia transmission over commodity networks. We leverage the computing capabilities 
of many-core CPU and GPUs. In this paper, the formula of APDSBT is deduced and the 
parallel computation based on GPU is used to accelerate the APDSBT based JPEG. 

The rest of this paper is organized as follows. Section 2 introduces the background, a brief 
introduction to DCT-JPEG and CUDA. Section 3 starts with a brief review of APDF and then 
the APDSBT is deduced in detail. Section 4 is the design of parallel algorithm of 
APDSBT-JPEG system and some accelerating optimization strategies are discussed. 
Experimental results of the proposed method are presented in Section 5. Conclusions and 
remarks on possible further work are given finally in Section 6. 

2. Background 

2.1 JPEG: DCT-Based Image Compression Standard 
The conventional 2-D DCT is always implemented separately by two 1-D DCTs. Let us use 

X  and C  to denote an image block and the DCT matrix with size of N N× , respectively. 
After the conventional 2-D DCT, the transform coefficient block Y  can be expressed as 

T=Y CXC , where TC  is the transpose matrix of C , 
 

1 ,                                 0,  0,1, , 1,
( , )

2 (2 1)πcos ,  1,2, , 1,  0,1, , 1.
2

i j N
Ni j

i j i N j N
N N


= = −

= 
+ = − = −

C


 

                    (1) 

 
Since DCT is an orthogonal transform, i.e. T 1−=C C , we use 1 1 T T( ) ( )− −= =X C Y C C YC  to 
reconstruct the image. 

The baseline JPEG system based on DCT is shown in Fig. 1. The encoder mainly contains 
four parts: DCT, quantization, Zig-zag ordering, and Huffman coder. At the beginning of 
JPEG coding, the source image is divided into 8×8 sub-images. Then every sub-image is 
processed by DCT. After DCT, every sub-image gets an 8×8 matrix which includes 64 DCT 
coefficients. The upper left corner coefficient is called DC coefficient, and the other 63 
coefficients are AC coefficients. According to the visual characteristics of human eyes which 
is sensitive to the low frequency component, but not sensitive to the high one, some AC 
coefficients can be dropped by quantization table for removing redundancy. As for coefficient 
matrix of every sub-image, DC coefficient is coded by differential pulse code modulation 
(DPCM), and AC coefficients are put in a one-dimensional array with Zig-zag ordering. After 
that, Huffman coding is used for image compression. 

Accordingly, the decoder also has four parts: Huffman decoder, inverse Zig-zag ordering, 
inverse quantization, and inverse DCT (IDCT). It has the reverse order with encoder. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4471 

Huffman 
coder 

DCT

Original image

Quantizer
Zig-zag 

scan

Compressed 
image data

Entropy decoderInverse 
Zig-zag scanDequantizerIDCT

Reconstructed
 image

Huffman table ChannelQuantization table

Run-length 
coder 

Huffman 
coder 

Entropy encoder8 8 blocks×

Bit stream

AC

DC DCPM

 
Fig. 1. DCT-JPEG system 

2.2 CUDA 
The data of image and video is too much to be processed in real-time. Therefore, parallel 

computation is necessary in image and video processing. In parallel computation, there are 
mainly two methods to parallel a program: task based parallelism and data based parallelism. 
For task based on parallelism, the task is divided into some independent tasks. Every task is 
processed by a thread. For data based parallelism, the data is mapped into threads, such as 
image processing, every pixel can be mapped into a thread. Because threads are parallel, the 
algorithm is executed parallel. 

CUDA is an easy-to-use programming interface which is added to graphics card by 
NVIDIA in 2007. In CUDA, it has three main components: CUDA libraries, CUDA runtime 
API, and CUDA device API. Due to the interface of CUDA, researchers could parallel their 
algorithm easier on GPU. In the programming model of CUDA displayed in Fig. 2, it has two 
parts: the host and the devices. CPU can be regard as host and GPUs should be seen as device. 
They both have their own memory, and the host memory could not be visited by device 
directly [25]. The data which will be processed in parallel should be copied from host memory 
to device memory, and copied back in the end of the program. Under this model, CPU and 
GPUs work together and fulfill their proper function. The CPU’s responsibility is to prepare 
data and driving kernel, while the GPU is focused on the implementation of highly threaded 
parallel processing tasks. 

 
Fig. 2. CUDA program model 

 
After developers analyzing the algorithm, they give the part of program which requires 

parallel computing to GPU. The function which runs on GPU for parallel computing is called 



4472         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

kernel. Kernel is not a complete and independent program. It is part of CUDA programs which 
runs on GPU and is used to compute what you need. The kernel function and the serial 
processing in host-side compose a complete CUDA program. These programs will be 
executed with the order of the sentences in the program. Host-side code is mainly used to 
prepare data and run the kernel on GPU. 

As shown in Fig. 3, in CUDA application, kernel is organized as grid. Every kernel has one 
grid. Grid is made up of blocks, and every block has many threads. Generally, the number of 
threads in every block has the relation with GPU. There are two levels of parallelism in a 
kernel: parallelism between blocks in the grid, and parallelism between threads in the block. 
Each thread executes the kernel one time according to the serial order of the instruction in the 
program [27]. Threads in the same block can communicate through shared memory. So 
developers would have more room for their program. 

Block
N

Warp
N

Grid

Warp
N+1

Warp
N-1

Warp
N

Warp
N+1

Warp
N-1

Warp
N

Warp
N+1

Warp
N-1

Block
N+1

Block
N-1

 
Fig. 3. The form of threads which was organized in GPU 

3. All Phase Digital Filtering and APDSBT 

3.1 All Phase Digital Filtering 
All phase digital filtering can be considered to an application of overlap filtering. For a 

digital sequence { ( )}x n , there are N  vectors which are N-dimensional. Each vector contains 
( )x n  and has different intercept phases: 

T
0

1 T
1 0

( 1) T
1 0

[ ( ), ( 1), , ( 1)] ,

[ ( 1), ( ), , ( 2)] ,
                                  

[ ( 1), ( 2), , ( )] ,N
N

x n x n x n N

z x n x n x n N

z x n N x n N x n

−

− −
−

= + + −

= = − + −

= = − + − +









X

X X

X X

                     (2) 

where jz− ( 0,1, , 1j N= − ) is the delay operator. Obviously, ( )x n  is the intersection of 
( 0,1, , 1)i i N= −X  , that is 0 1 1( ) Nx n −= X X X  . According to the conventional 

representation of data matrices, the all phase data matrix of ( )x n  is defined as 

0 1 1( ) [ , , , ]N Nn −=A X X X , and it is spanned by the column vectors ( 0,1, , 1)i i N= −X  . 

3.2 Proposed APDSBT 
The all phase digital filter based on DFT proposed in 2003 is a new scheme for 1-D digital 

FIR filter [5]. The performance of APDF is superior to that of conventional filter. With the 
development of APDF theory, some further works were proposed recently, like APBT [7] and 
WAPBT [8]. In this paper, we propose a new transform called APDSBT based on DST. 

Similar to APDF based on DCT [28], the process of 1-D signal passing through the APDF 
based on DST is shown in Fig. 4. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4473 

 
Fig. 4. 1-D signal flowing through the APDF based on DST 

 
In APDF based on DST, F  is an N-D expected sequency response vector, where sequency 

can be regarded as “extensive frequency” in a broad sense. DST matrix is represented as S  
and it is defined in Eq. (4). Since DST is an orthogonal transform, the IDST matrix is 

1 T− =S S . 
T[ (0), (1), , ( 1)] .N N NF F F N= −F                                             (3) 

2 (2 1)( 1)π( , ) sin ,   , 0,1, , 1.
2 12 1

i jS i j i j N
NN

+ +
= = −

++
                            (4) 

 
The relation between input signal ( )x n  and output signal ( )y n  in DST-based APDF is shown 
in Fig. 5. 

 
Fig. 5. Relation between input signal ( )x n  and output signal ( )y n  in APDF based on DST 



4474         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

In order to describe the APDF based on DST more clearly, in the following, the way to 
design APDF based on DST will be introduced mathematically. Denote iX ( 0,1, , 1)i N= −  
be the -thi  column vector of the all phase data matrix of ( )x n . After iX  is filtered, the value 
of ( )iy n  is obtained: 

T T( ) { [ ( )]},i
i iy n = ⋅e S  F SX                                                   (5) 

where the mark “ ⋅ ” represents dot product operation. ( 0,1, , 1)i i N= −e   is the i-th N-D 
column vector. The i-th element in vector ie  is the value 1 and the rest elements are the value 
0. 

0 1 1[ , , , ],N −=E e e e                                                          (6) 

According to Eqs. (2)~(6), the output ( )y n  can be expressed as: 
1 1

T T

0 0
1 1 1

T

0 0 0

1 1

0 0

1 1( ) ( ) { { [ ( )]}}

1 [ ( ( ) ( , ) ( , ))] ( )

[ ( , ) ( )],

N N
i

i i
i i
N N N

N
i j k

N N

i j

y n y n
N N

F k S i k S k j x n i j
N

H i j x n i j

− −

= =

− − −

= = =

− −

= =

= = ⋅

= − +

= − +

∑ ∑

∑ ∑ ∑

∑∑

e S  F SX

                              (7) 

where 
1 1

T

0 0

1 1( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ).
N N

N N
m m

H i j F m S i m S m j F m S m i S m j
N N

− −

= =

= =∑ ∑                    (8) 

Then Eq. (7) can be rewritten as the convolution form of signal filtering: 
1 1 1 1

0 0 ( 1)

1 1 1

( 1) ( 1)

( ) [ ( , ) ( )] [ ( , ) ( )]

[ ( , )] ( ) ( ) ( ) ( ) ( ).

N N N N

i j i N

N N N

N i N

y n H i j x n i j H i i x n

H i i x n h x n h n x n

τ

τ τ

τ

τ τ τ

τ τ

τ τ τ τ

− − + − −

= = = =− −

− + − −

=− − = =− −

= − + = − −

= − − = − = ∗

∑∑ ∑ ∑

∑ ∑ ∑
            (9) 

Therefore, the unit impulse response ( )h τ  is obtained and can be expressed by: 
1

1

0

( , ), 0,1, , 1,
( )

( , ), 1, 2, , 1.

N

i
N

i

H i i N
h

H i i N

τ

τ

τ τ
τ

τ τ

−

=

+ −

=


− = −= 

 − = − − − +


∑

∑





                                  (10) 

Since H  is a symmetric matrix: ( , ) ( , )H i j H j i= , according to Eqs. (8) and (10), we have: 
1 1 1

0
1

0

1( ) ( , ) [ ( ) ( , ) ( , )]

( , ) ( ).

N N N

N
i i m
N

N
m

h H i i F m S m i S m i
N

V m F m

τ τ

τ τ τ

τ

− − −

= = =

−

=

= − = −

=

∑ ∑∑

∑
                       (11) 

Eq. (11) can be expressed in matrix format: =h VF . The transition matrix V  establishes the 
connection between unit pulse response in time domain and sequency response in orthogonal 
transform domain. We call it APDSBT matrix. Similar to DST matrix S , it can be used in 
image compression transforming the image from spatial domain to frequency domain too. The 
elements of V  can be calculated by: 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4475 

1 1

0

1 1( , ) ( , ) ( , ) ( , ) ( , )
N N

i i
V m S m i S m i S m i S m i

N N

τ

τ

τ τ τ
− − −

= =

= − = +∑ ∑ .                    (12) 

Making variable substitution: ,  ,  i l i m jτ→ → → , Eq. (12) can be rewritten as: 
1

0

1( , ) ( , ) ( , )
N i

l
V i j S j l S j l i

N

− −

=

= +∑ .                                            (13) 

Substituting Eq. (4) into Eq. (13), the APDSBT matrix with size of N N×  is obtained: 

1

0

1 ,                                                                                 0, 0,1, , 1,
( , ) 1,2, , 1,4 (2 1)( 1)π (2 1)( 1)πsin sin ,   

0,1, , 1.(2 1) 2 1 2 1

N i

l

i j N
N

V i j i Nj l j l i
j NN N N N

− −

=

 = = −=  = −+ + + + + 
  = −+ + + 

∑










   (14) 

For example, when 8N = , 
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1083 0.0927 0.0635 0.0248 0.0182 0.0598 0.0943 0.1171
0.0889 0.0407 0.0297 0.0842 0.0925 0.0481 0.0277 0.0971
0.0684 0.0095 0.0767 0.0560 0.0299 0.0817 0.0336

− − − −
− − − −

− − − −
=V

0.0713
0.0484 0.0415 0.0543 0.0345 0.0588 0.0295 0.0616 0.0453
0.0305 0.0488 0.0011 0.0496 0.0302 0.0300 0.0538 0.0237
0.0158 0.0358 0.0296 0.0021 0.0270 0.0386 0.0283 0.0092
0.0054 0.0149 0.0210 0.0226 0.0197 0.01

− − − −
− − − − −
− − − −
− − − 39 0.0072 0.0020

 
 
 
 
 
 
 
 
 
 
 

−  

. (15) 

3.3 APDSBT-JPEG Image Coding Scheme 
Similar to DCT-JPEG, the APDSBT-JPEG mainly has four parts: transform and inverse 

transform, encoding and decoding. The proposed scheme of APDSBT-JPEG image codec is 
shown in Fig. 6. The peculiarity of APBT-JPEG, the uniform quantization step, is inherited by 
the proposed scheme. With the uniform quantization step, the computational complexity is 
reduced. 

 

APDSBT Quantizer Zig-zag scan Entropy 
encoder

Compressed 
image data

Entropy 
decoder

Inverse
Zig-zag scanDequantizerIAPDSBT

Huffman table ChannelUniform quantization step

Reconstructed 
image

Original image

 
Fig. 6. The proposed scheme of APDSBT-JPEG image codec 

4. Parallel JPEG-like Image Coding Based on APDSBT 

4.1 Design of Parallel APDSBT-JPEG 
For JPEG compression based on GPU, due to the independence of image data, the JPEG 

compression and decompression are quite suitable for a highly parallel GPU architecture. But 



4476         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

some operations could not be processed in parallel. Therefore, the task should be split between 
CPU and GPU. The APDSBT-JPEG encoder and decoder mainly comprise eight steps: 
APDSBT and inverse APDSBT (IAPDSBT), quantization and dequantization, Zig-zag 
ordering and inverse Zig-zag scanning, Huffman encoding and decoding. All these operations 
can be processed in parallel by GPU, as shown in Fig. 7. But some operations should be 
processed serially by CPU, like image data transmission. In heterogeneous architecture, the 
memories of CPU and GPU are independent. We call them the CPU’s memory, host memory, 
and GPU’s memory, graphics memory, respectively. They could not access each other. For 
parallel computing, CPU needs to load the data from hard disk to host memory. Then the data 
will be transferred to graphics memory through PCI-E bus by CUDA interface. 

 

Load 
image 

Pre-
processing APDSBT Quantizer

Zig-zag
Huffman
encoding

Data streamCPU

GPU

Stream 
processing  

(a) 

Input
stream 

Stream pre-
processing

Huffman
decoding

Dequantizer
Zig-zag IAPDSBT

Reconstructed 
imageCPU

GPU

Stream 
processing  

(b) 
Fig. 7. Parallel model of APDSBT-JPEG: (a) Encoding and (b) Decoding 

 
In the pre-processing of parallel JPEG compression, the data has been transformed to 

graphics memory. After that, the data can be processed in parallel by GPU [19]. Although 
parallel computation can improve the efficiency of algorithm, there is latency existing in data 
transmission. If we want to get higher efficiency, we should reduce the volume of data transfer 
between host memory and Graphics’ memory, and improve the parallelism between the GPU 
and CPU. In the future, this phenomenon will disappear with some new technology, like 
zero-copy memory and APU (accelerated processing unit). And for large-scale image 
processing, the latency of data transmission could be hidden by massive parallel computation 
and the coordination processing with CPU. 

There are two parallel levels in CUDA program model: the first one is parallelism between 
blocks in grid, and the second one is parallelism between threads in block. In JPEG 
compression, the image is compressed by 8×8 block, and each block has 64 pixels. The 
independent nature of the pixels and blocks automatically leads to data level parallelism in 
CUDA. Because of these two factors, JPEG compression can take advantage of CUDA’s 
massive parallelism. With the help of GPU, the JPEG compression time can be greatly reduced 
to a reasonable level. Therefore, the strategy of threads mapping is obviously shown in Fig. 8. 
Different types of thread-mapping are assumed because the CPU and GPU have a different 
number of hardware computing units that will run work-items. In our parallel implementation, 
thread-mapping is the relationship between the number of image blocks and the number of 
CUDA block, then each CUDA block has 64 threads which corresponds to 64 pixels in image 
block. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4477 

Block2
Thread1

Mapping Mapping

Block1

Block3
Block4
Block5
Block6

Block7

Thread2
Thread3
Thread4
Thread5
Thread6

Thread64
BlockN

Grid
Block

8×8 sub-image Mapping

 
Fig. 8. Threads mapping between CUDA and image data 

 
The forward and inverse APDSBT implementations can utilize the data parallelism per 8×8 

block of samples, where each data block could be consecutively scanned by 64 concurrent 
threads. Thus the transform allows for effective implementations on highly parallel 
architectures. The quantization also could be processed in which every APDSBT coefficient 
from an 8×8 block is transformed according to quantization table. After forward transform, 
quantization, and Zig-zag scan, we will get 64 coefficients. The first coefficient, which locates 
in the upper left corner, is DC coefficient; the other 63 coefficients are AC coefficient which 
will be coded by Huffman algorithm. In parallel entropy coding, the most important part of 
Huffman coding is run-length coding. We can not process it like CPU, just count it. If we 
process it on CPU, the latency of data transmission is huge. So we use a new strategy to obtain 
the run-length, sorting in Fig. 9. AC coefficients are compared with zero parallel. If the 
coefficient is not equal to zero, we put the number of the thread in the array. If the coefficient 
is equal to zero, we put the number which is above 64 in the array in order to facilitate the 
sorting. After sorting, the run-length is got. In this paper, odd-even sort is used, because it is 
quite suitable to parallel. 

63 AC coefficients 

5 0 1 0 0 0 1 0 0...0 0 0 0 0 0 1 0

1 66 3 66 66 66 7 66 66...66 66 66 66 66 66 15 66

1 3 7 15 66 66 66 66 66...66 66 66 66 66 66 66 66

Compared with zero parallel

Sorted parallel 

Run-length  
Fig. 9. Method for getting run-length 

 

4.2 Optimal Strategy of Parallel APDSBT-JPEG 
GPU is more suitable to parallel computation, because it has much more cores than CPU, 

and it can lunch thousands of threads at the same time. But the source of GPU is limited. In 
CUDA program, the threads are grouped into warps, blocks, and grid. A warp consists of 32 
threads. Warps and blocks run on SM (stream multi-processor). The number of SM which can 
be thought of the core of CPU is an important indicator to measure the computation capacity of 
GPU. In GTX 480, each SM can launch up to 1536 threads. Thus, with the increase of image 



4478         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

data, the cost of time on GPU will increase accordingly. Applying large-scale JPEG encoding 
to parallel computing may result in overload problem. In parallel APDSBT-JPEG 
compression, we use two parallel levels to process the image data, and all the compressed 
operation is implemented on GPU. But the CPU is idled, when the GPU is running. So we 
optimize the previous parallel strategy. Most of image data is transferred to GPU, while some 
image data is processed on CPU, as shown in Fig. 10. 

 

Load 
image Pre-processing

Parallel APDSBT-JPEG encoder

APDSBT-
JPEG encoder Data streamCPU

GPU

 
(a) 

Input
stream 

Code stream
parsing

Parallel APDSBT-JPEG decoder

APDSBT-
JPEG decoder

Reconstructed 
imageCPU

GPU

 
(b) 

Fig. 10. The optimized parallel strategy for APDSBT-JPEG: (a) Encoding and (b) Decoding 
 

On the GPU, not only the SM is limited, but also the register is limited. There are a number 
of levels of areas where the data can be placed. Table 1 shows each defined-storage by its 
potential bandwidth and latency. Although register is the fastest type of storage, a kernel that 
requests too many registers per thread can limit the number of blocks. The GPU can schedule 
on an SM, and thus the total number of threads will run. So we should pay attention to balance 
the usage of different types of storage. 

 
Table 1. Time cost of different memory type 

Storage of 
Type Registers Shared 

memory 
Texture 
memory 

Constant 
memory 

Global 
memory 

Bandwidth 8 TB/s 1.5 TB/s 200 MB/s 200 MB/s 200 MB/s 
Latency/cycle 1 1~32 400~600 400~600 400~600 

5. Experimental Results and Analysis 
In the experiment, we evaluate the performance of the proposed algorithm, parallel 

APDSBT-JPEG based on GPU, from three aspects: PSNR comparison of DCT-JPEG, 
DST-JPEG, APDCBT-JPEG, and APDSBT-JPEG; visual quality of the reconstructed images 
of DCT-JPEG, DST-JPEG, APDCBT-JPEG, and APDSBT-JPEG; and the efficiency 
comparison of serial algorithm and parallel algorithm. Throughout this paper, all experiments 
are conducted with CUDA 7.0 on the desktop computer (3.10 GHz Intel Core i3-2100 CPU, 
6GB DDR3 RAM) installed with 64-bit Windows 10 operating system, the GPU used for the 
experiment is GTX480 with 1.5 GB graphics memory. 

 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4479 

5.1 PSNR Comparison of DCT-JPEG, DST-JPEG, APDCBT-JPEG, and 
APDSBT-JPEG 

In order to estimate the objective performance of propose methods, in this paper, we apply 
the proposed transform APDSBT to JPEG image coding. In the experiment, the novel 
JPEG-like image compression algorithm is tested by typical test images (Lena, Baboon, 
Barbara, and Bridge, all of them are 8 bit/pixel, monochrome images with size of 512×512. 
The original format is BMP.). Peak signal to noise ratio (PSNR) is chosen to measure the 
performance of reconstructed images in this experiment. 

 

[ ]

2

10
2

in out
1 1

255PSNR 10log (dB)
( , ) ( , )

M N

i j

MN

I i j I i j
= =

 
 
 =
 − 
 
∑∑

,                           (16) 

 
where inI  and outI  stand for the original image and the reconstructed image respectively. M  
and N  represent the height and width of the test image. 

Table 2 shows the experimental results of image Lena with DCT-JPEG, DST-JPEG, 
APDCBT-JPEG, and APDSBT-JPEG in terms of PSNR at different bit rates. The 
experimental results of image Baboon are shown in Table 3. From Table 2 and Table 3, we 
conclude that compared with DCT-JPEG algorithm at the same bit rates in terms of PSNR, the 
performance of APDSBT-JPEG algorithm is superior to conventional DCT-JPEG in image 
compression. And the performance of proposed transform is the best among the four 
transforms. Fig. 11 shows the ratio distortion curves of different test images (Lena, Barbara, 
Baboon, and Bridge). With the curves shown in Fig. 11, we get the more intuitive results. 

 
Table 2. Experimental results of image Lena 

Bit rate/bpp PSNR/dB 
DCT-JPEG APDCBT-JPEG DST-JPEG APDSBT-JPEG 

0.15 25.82 26.76 20.38 27.21 
0.20 28.91 29.16 22.41 29.40 
0.25 30.69 30.67 23.52 30.95 
0.30 31.92 31.72 24.60 32.11 
0.40 33.62 33.30 26.49 33.71 
0.50 34.74 34.40 27.76 34.88 
0.60 35.61 35.27 28.88 35.82 
0.75 36.62 36.33 30.56 36.90 
1.00 37.93 37.63 32.59 38.20 
1.25 39.00 38.65 33.72 39.24 

 



4480         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

0 0.2 0.4 0.6 0.8 1 1.2
20

22

24

26

28

30

32

34

36

38

40

bpp

P
S

N
R

 

 
APDSBT-JPEG
DCT-JPEG
APDCBT-JPEG
DST-JPEG

    
0 0.2 0.4 0.6 0.8 1 1.2

18

20

22

24

26

28

30

32

34

36

bpp

P
S

N
R

 

 
APDSBT-JPEG
DCT-JPEG
APDCBT-JPEG
DST-JPEG

 
(a)                                                                         (b) 

0 0.2 0.4 0.6 0.8 1 1.2
18

19

20

21

22

23

24

25

26

27

28

bpp

P
S

N
R

 

 
APDSBT-JPEG
DCT-JPEG
APDCBT-JPEG
DST-JPEG

    
0 0.2 0.4 0.6 0.8 1 1.2

16

18

20

22

24

26

28

30

bpp

P
S

N
R

 

 
APDSBT-JPEG
DCT-JPEG
APDCBT-JPEG
DST-JPEG

 
(c)                                                                          (d) 

Fig. 11. The ratio distortion curves: (a) Lena, (b) Barbara, (c) Baboon, and (d) Bridge 
 

Table 3. Experimental results of image Baboon 

Bit rate/bpp PSNR/dB 
DCT-JPEG APDCBT-JPEG DST-JPEG APDSBT-JPEG 

0.15 20.09 20.47 18.68 20.50 
0.20 20.94 21.13 19.59 21.18 
0.25 21.56 21.65 20.35 21.72 
0.30 21.09 22.12 20.84 22.20 
0.40 22.98 22.93 21.86 23.06 
0.50 23.69 23.62 22.70 23.80 
0.60 24.38 24.27 23.44 24.48 
0.75 25.30 25.10 24.32 25.40 
1.00 26.57 26.36 25.57 26.79 
1.25 27.81 27.56 26.64 27.96 

 

5.2 Visual Quality of the Reconstructed Images of DCT-JPEG, DST-JPEG, 
APDCBT-JPEG, and APDSBT-JPEG 

In order to compare the compression performance subjectively, Fig. 12 shows the 
reconstructed image Lena which is obtained by using DST-JPEG, DCT-JPEG, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4481 

APDCBT-JPEG, and APDSBT-JPEG at a certain bit rate 0.20 bpp. From the experiment 
results, it is clear that, compared with the DCT-JPEG and other like-JPEG algorithm, the 
visual quality of the proposed algorithm APDSBT-JPEG has a better subjective quality. And 
we can see that compared with conventional DCT-JPEG, the proposed algorithm improves the 
performance at various bit rates, both in terms of PSNR and visual quality. 

 

                 
(a)                                                              (b) 

                 
(c)                                                               (d) 

Fig. 12. Lena images obtained at 0.20 bpp: (a) DST-JPEG, with PSNR=22.41 dB, (b) DCT-JPEG, with 
PSNR=28.91 dB, (c) APDCBT-JPEG, with PSNR=29.16 dB, and (d) APDSBT-JPEG, with 

PSNR=29.40 dB 

 

5.3 The Efficiency Comparison of Serial Algorithm and Parallel Algorithm 
From the experimental results in Fig. 13, we know the efficiency of parallel APDSBT 

algorithm is much higher than that of serial APBT algorithm. In order to facilitate the 
comparison, the time of APDSBT-JPEG on CPU is reduced 10 times. The parallel APBT that 
runs on GPU can gain at least 100 times acceleration, and the maximum speedup ratio can 
reach more than 140 times. So the computational efficiency of parallel computing is very 
impressive in general. Parallel computing based on GPU can process dozens of images at the 
same time, and the efficiency of APDSBT is greatly improved. 



4482         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

128x128 128x256 256x256 256x512 512x512 512x1024 1024x1024
0

20

40

60

80

100

120

140

160

180

200

Size

Ti
m

e(
m

s)

 

 

APDSBT-JPEG on CPU(10:1)
APDSBT-JPEG on GPU(1:1)

 
Fig. 13. The running time of APDSBT-JPEG in different platforms 

 
In APDSBT-JPEG, the part of quatization and dequatization is different from DCT-JPEG. 

The uniform quantization step is adopted in APDSBT-JPEG. Since the uniform quantization 
step is simpler than luminance quantization table, the complexity of APDSBT-based JPEG is 
lower than that of DCT-based JPEG, and APDSBT-JPEG could reduce memory usage rate. 
From Fig. 14, we know that the efficiency of proposed method is higher than that of 
DCT-JPEG. 

128x128 128x256 256x256 256x512 512x512 512x1024 1024x1024
0

2

4

6

8

10

12

14

16

18

20

Size

Ti
m

e(
m

s)

 

 

DCT-JPEG on GPU
APDSBT-JPEG on GPU

 
Fig. 14. Comparison of DCT-JPEG on GPU and APDSBT-JPEG on GPU 

 
From Fig. 14, we can see that with the increase of image data, the cost of time on GPU will 

increase correspondingly. Because the source of GPU is limited, in this paper, we use the 
optimal strategy to parallel the proposed APDSBT-JPEG. The image is divided into two slices 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4483 

with different size. The small slice will be compressed by CPU, and the big one will be 
transferred to graphics memory. The image data on GPU will be processed in parallel by 
thousands threads. The comparison between the parallel algorithm which is proposed 
previously (GPU, in red) and the optimal parallel strategy (CPU+GPU, in blue) is shown in 
Fig. 15. From the bar graph, we know that the efficiency can be improved over 10% by the 
optimal parallel strategy. 

128x128 128x256 256x256 256x512 512x512 512x1024 1024x1024
0

2

4

6

8

10

12

14

16

18

20

Size

Ti
m

e(
m

s)

 

 

CPU + GPU
GPU

 
Fig. 15. Comparison between the parallel algorithm and the optimal parallel strategy 

6. Conclusion 
The paper proposes a new transform which is called APDSBT based on the theory of all 

phase digital filter and discrete sine transform. The compression and reconstruction of image 
is successfully achieved with APDSBT by replacing DCT which is commonly used in image 
compression. Compared with DCT-JPEG and APDCBT-JPEG, better objective and subjective 
performance is obtained. By inheriting good properties from APBT-JPEG, the advantage of 
the proposed algorithm is the simple quantization, taking uniform quantization for transform 
coefficients, especially saving many multiplication operations when adjusting the bit rates. A 
simpler and more effective algorithm is therefore developed, and can be easily implemented in 
both software and hardware. An efficient parallel implementation of APDSBT-JPEG is 
presented with parallel computation based on GPU. With the parallel computing algorithm, 
the computing efficiency is improved more than one hundred times speed ratio, compared with 
conventional serial algorithms based on CPU. We also propose some parallel strategies and 
methods to improve the efficiency of parallel algorithm, which can improve the efficiency 
over 10%. 

In the near future, we will apply the APDSBT to video compression, like H.264 and HEVC, 
and use parallel algorithm to accelerate the speed of video compression. 

 
 



4484         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

Acknowledgments 
This work was supported by the Natural Science Foundation of Shandong Province, China 
(Grant No. ZR2015PF004), the National Natural Science Foundation of China (Grant No. 
61201371), the promotive research fund for excellent young and middle-aged scientists of 
Shandong Province, China (Grant No. BS2013DX022), and the Fundamental Research Funds 
of Shandong University (Grant No. 2014ZQXM008). The authors thank Qiming Fu, Heng 
Zhang, and Yunpeng Zhang for their kind help and valuable suggestions in revising this paper. 
The authors also thank the anonymous reviewers and the editors for their valuable comments 
to improve the presentation of the paper. 

References 
[1] ISO/IEC, “Information Technology -- Digital Compression and Coding of Continuous-tone Still 

Images -- Part 1: Requirements and Guidelines,” ISO/IEC 10918-1:1994 | ITU-T Rec. T.81, Sept. 
22, 2011. [Online] Available ww.iso.org/iso/catalogue_detail.htm?csnumber=18902. 

[2] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the 
H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, 
no. 9, pp. 1103-1120, Sept. 2007. Article (CrossRef Link). 

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video 
coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 
22, no. 12, pp. 1649-1668, Dec. 2012. Article (CrossRef Link). 

[4] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Transactions on 
Computers, vol. 23, no. 1, pp. 90-93, Jan. 1974. Article (CrossRef Link). 

[5] Z. X. Hou and X. Yang, “The all phase DFT filter,” in Proc. of the 10th IEEE Digital Signal 
Processing (DSP) Workshop and the 2nd IEEE Signal Processing Education (SPE) Workshop, 
Pine Mountain, Georgia, USA, Oct. 13-16, 2002, pp. 221-226. Article (CrossRef Link). 

[6] Z. X. Hou, Z. H. Wang, and X. Yang, “Design and implementation of all phase DFT digital filter,” 
Acta Electronica Sinica, vol. 31, no. 4, pp. 539-543, Apr. 2003. Article (CrossRef Link). 

[7] Z. X. Hou, C. Y. Wang, and A. P. Yang, “All phase biorthogonal transform and its application in 
JPEG-like image compression,” Signal Processing : Image Communication, vol. 24, no. 10, pp. 
791-802, Nov. 2009. Article (CrossRef Link). 

[8] Q. M. Fu, X. Zhou, C. Y. Wang, and B. C. Jiang, “Windowed all phase biorthogonal transform and 
its application in JPEG-like image compression,” Journal of Communications, vol. 10, no. 4, pp. 
284-293, Apr. 2015. Article (CrossRef Link). 

[9] Z. X. Hou and N. N. Xu, “Windowed all phase DFT digital filter,” Journal of Tianjin University 
(Science and Technology), vol. 38, no. 5, pp. 448-454, May 2005. Article (CrossRef Link). 

[10] A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian, “Shape-adaptive DCT for denoising and 
image reconstruction,” in Proc. of the SPIE - IS & T Electronic Imaging -- Image Processing: 
Algorithms and Systems, Neural Networks, and Machine Learning, San Jose, USA, Jan. 16-18, vol. 
6064, Article number: 60640N, 12 pages, 2006. Article (CrossRef Link). 

[11] M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, and M. Sadafale, “Core transform design in the 
high efficiency video coding (HEVC) standard,” IEEE Journal of Selected Topics in Signal 
Processing, vol. 7, no. 6, pp. 1029-1041, Dec. 2013. Article (CrossRef Link). 

[12] Y. A. Reznik, “Relationship between DCT-II, DCT-VI, and DST-VII transforms,” in Proc. of the 
IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 
May 26-31, pp. 5642-5646, 2013. Article (CrossRef Link). 

[13] S. Zoican, R. Zoican, and D. Galatchi, “Methods for real time implementation of image processing 
algorithms,” UPB Scientific Bulletin, Series C: Electrical Engineering, vol. 77, no. 2, pp. 127-148, 
Mar. 2015. Article (CrossRef Link). 
 
 

http://dx.doi.org/doi:10.1109/TCSVT.2007.905532
http://dx.doi.org/doi:10.1109/TCSVT.2012.2221191
http://dx.doi.org/doi:10.1109/T-C.1974.223784
http://dx.doi.org/doi:10.1109/DSPWS.2002.1231107
http://dx.doi.org/doi:10.3321/j.issn:0372-2112.2003.04.014
http://dx.doi.org/doi:10.1016/j.image.2009.08.002
http://dx.doi.org/doi:10.12720/jcm.10.4.284-293
http://dx.doi.org/doi:10.3969/j.issn.0493-2137.2005.05.015
http://dx.doi.org/doi:10.1117/12.642839
http://dx.doi.org/doi:10.1109/JSTSP.2013.2270429
http://dx.doi.org/doi:10.1109/ICASSP.2013.6638744
http://www.scientificbulletin.upb.ro/rev_docs_arhiva/full305_144091.pdf


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4485 

[14] Z. Xue, K. K. Loo, J. Cosmas, and P. Y. Yip, “Distributed video coding in wireless multimedia 
sensor network for multimedia broadcasting,” WSEAS Transactions on Communications, vol. 7, 
no. 5, pp. 418-427, Mar. 2008. Article (CrossRef Link). 

[15] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim, “Design and performance evaluation of 
image processing algorithms on GPUs,” IEEE Transactions on Parallel and Distributed Systems, 
vol. 23, no. 1, pp. 91-104, Jan. 2011. Article (CrossRef Link). 

[16] C. G. Yan, Y. D. Zhang, J. Z. Xu, F. Dai, J. Zhang, Q. H. Dai, and F. Wu, “Efficient parallel 
framework for HEVC motion estimation on many-core processors,” IEEE Transactions on 
Circuits and Systems for Video Technology, vol. 24, no. 12, pp. 2077-2089, Dec. 2014. 
Article (CrossRef Link). 

[17] C. G. Yan, Y. D. Zhang, J. Z. Xu, F. Dai, L. Li, Q. H. Dai, and F. Wu, “A highly parallel 
framework for HEVC coding unit partitioning tree decision on many-core processors,” IEEE 
Signal Processing Letters, vol. 21, no. 5, pp. 573-576, May 2014. Article (CrossRef Link). 

[18] W. Xiao, B. Li, J. Z. Xu, G. M. Shi, and F. Wu, “HEVC encoding optimization using multicore 
CPUs and GPUs,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 
11, pp. 1830-1843, Nov. 2015. Article (CrossRef Link). 

[19] S. Che, M. Boyer, J. Y. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A performance study of 
general-purpose applications on graphics processors using CUDA,” Journal of Parallel and 
Distributed Computing, vol. 68, no. 10, pp. 1370-1380, Oct. 2008. Article (CrossRef Link). 

[20] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the DWT in a GPU through a 
register-based strategy,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, 
pp. 3394-3406, Dec. 2015. Article (CrossRef Link). 

[21] Y. K. Wang and W. B. Huang, “A CUDA-enabled parallel algorithm for accelerating retinex,” 
Journal of Real-Time Image Processing, vol. 9, no. 3, pp. 407-425, Sept. 2014. 
Article (CrossRef Link). 

[22] H. Fassold and J. Rosner, “A real-time GPU implementation of the SIFT algorithm for large-scale 
video analysis tasks,” in Proc. of the SPIE - IS & T Electronic Imaging -- Real-Time Image and 
Video Processing, San Francisco, USA, Feb. 10, vol. 9400, Article number: 940007, 8 pages, 2015. 
Article (CrossRef Link). 

[23] D. Liu and X. Y. Fan, “Parallel program design for JPEG compression encoding,” in Proc. of the 
9th International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, 
May 29-31, vol. 9, pp. 2502-2506, 2012. Article (CrossRef Link). 

[24] P. Holub, M. Srom, M. Pulec, J. Matela, and M. Jirman, “GPU-accelerated DXT and JPEG 
compression schemes for low-latency network transmissions of HD, 2K, and 4K video,” Future 
Generation Computer Systems, vol. 29, no. 8, pp. 1991-2006, Oct. 2013. Article (CrossRef Link). 

[25] N. Alqudami and S. D. Kim, “Adaptive discrete cosine transform-based image compression 
method on a heterogeneous system platform using open computing language,” Journal of 
Electronic Image, vol. 23, no. 6, 16 pages, Nov.-Dec. 2014. Article (CrossRef Link). 

[26] G. B. Shen, G. P. Gao, S. P. Li, H. Y. Shum, and Y. Q. Zhang, “Accelerate video decoding with 
generic GPU, accelerate video decoding with generic GPU,” IEEE Transactions on Circuits and 
Systems for Video Technology, vol. 15, no. 5, pp. 685-693, May 2005. Article (CrossRef Link). 

[27] C. Y. Wang, R. Y. Shan, and X. Zhou, “APBT-JPEG image coding based on GPU,” KSII 
Transactions on Internet and Information Systems, vol. 9, no. 4, pp. 1457-1470, Apr. 2015. 
Article (CrossRef Link). 

[28] X. Zhou, Q. M. Fu, F. F. Yang, and C. Y. Wang, “Implementation of biorthogonal wavelet 
transform using windowed APDF based on DCT,” International Journal of Signal Processing, 
Image Processing and Pattern Recognition, vol. 7, no. 6, pp. 1-16, Dec. 2014. 
Article (CrossRef Link). 

 
 
 
 
 

http://www.wseas.us/e-library/transactions/communications/2008/27-181.pdf
http://dx.doi.org/doi:10.1109/TPDS.2010.115
http://dx.doi.org/doi:10.1109/TCSVT.2014.2335852
http://dx.doi.org/doi:10.1109/LSP.2014.2310494
http://dx.doi.org/doi:10.1109/TCSVT.2015.2406199
http://dx.doi.org/doi:10.1016/j.jpdc.2008.05.014
http://dx.doi.org/doi:10.1109/TPDS.2014.2384047
http://dx.doi.org/doi:10.1007/s11554-012-0301-6
http://dx.doi.org/doi:10.1117/12.2083201
http://dx.doi.org/doi:10.1109/FSKD.2012.6234221
http://dx.doi.org/doi:10.1016/j.future.2013.06.006
http://dx.doi.org/doi:10.1117/1.JEI.23.6.061110
http://dx.doi.org/doi:10.1109/TCSVT.2005.846440
http://dx.doi.org/doi:10.3837/tiis.2015.04.011
http://dx.doi.org/10.14257/ijsip.2014.7.6.01


4486         Shan et al.: All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU 

 
 
 

 
 

Rongyang Shan received his B.E. degree in communication engineering from 
Shandong University, Weihai, China, in 2014. He is currently pursuing his M.E. degree in 
signal and information processing at Shandong University, China. His current research 
interests include transform coding, parallel computing, and video watermarking. 

 
 

Xiao Zhou received her B.E. degree in automation from Nanjing University of Posts 
and Telecommunications, China in 2003; her M.E. degree in information and 
communication engineering from Inha University, Korea, in 2005; and her Ph.D. degree 
in information and communication engineering from Tsinghua University, China, in 
2013. She is currently a lecturer and supervisor of postgraduate students with the School 
of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, 
China. Her current research interests include wireless communication technology, and 
digital image processing and analysis. 

 

Chengyou Wang received his B.E. degree in electronic information science and 
technology from Yantai University, China, in 2004, and his M.E. and Ph.D. degrees in 
signal and information processing from Tianjin University, China, in 2007 and 2010, 
respectively. He is currently an associate professor and supervisor of postgraduate 
students with the School of Mechanical, Electrical and Information Engineering, 
Shandong University, Weihai, China. His current research interests include digital 
image/video processing and analysis (transform coding, digital watermarking, image 
forensics, image dehazing, image quality assessment, etc.), computer vision, pattern 
recognition and machine learning, and multidimensional signal and information 
processing. 
 

 

Baochen Jiang received his B.S. degree in radio electronics from Shandong University, 
China, in 1983 and his M.E. degree in communication and electronic systems from 
Tsinghua University, China, in 1990. He is currently a professor and supervisor of 
postgraduate students with the School of Mechanical, Electrical and Information 
Engineering, Shandong University, Weihai, China. His current research interests include 
signal and information processing, digital image/video processing and analysis, and smart 
grid technology. 

 


