DOI QR코드

DOI QR Code

Effects of carbon additives on heat-transfer and mechanical properties of high early strength cement mortar

  • Lee, Dae-Geun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyeong Gi (Korea Fire Safety Association (KFSA)) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2016.09.02
  • Accepted : 2016.09.30
  • Published : 2016.10.31

Abstract

Keywords

References

  1. Haach VG, Juliani LM, Roz MRD. Ultrasonic evaluation of mechanical properties of concretes produced with high early strength cement. Constr Build Mater, 96, 1 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.07.139.
  2. Chang C, Ho M, Song G, Mo YL, Li H. A feasibility study of selfheating concrete utilizing carbon nanofiber heating elements. Smart Mater Struct, 18, 127001 (2009). http://dx.doi.org/10.1088/0964-1726/18/12/127001.
  3. Xu Y, Chung DDL. Effect of sand addition on the specific heat and thermal conductivity of cement. Cem Concr Res, 30, 59 (2000). http://dx.doi.org/10.1016/S0008-8846(99)00206-9.
  4. Corinaldesi V, Mazzoli A, Moriconi G. Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Mater Des, 32, 1646 (2011). http://dx.doi.org/10.1016/j.matdes.2010.10.013.
  5. Ahn KL, Jang SJ, Jang SH, Yun HD. Effects of aggregate size and steel fiber volume fraction on compressive behaviors of highstrength concrete. J Korea Concr Inst, 27, 229 (2015). http://dx.doi.org/10.4334/JKCI.2015.27.3.229.
  6. Liu J, Li Y, Li Y, Sang S, Li S. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram Int, 42, 8221 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.02.032.
  7. Kim KH, Jeon SE, Kim JK, Yang S. An experimental study on thermal conductivity of concrete. Cem Concr Res, 33, 363 (2003). http://dx.doi.org/10.1016/S0008-8846(02)00965-1.
  8. Yuan G, Li X, Dong Z, Xiong X, Rand B, Cui Z, Cong Y, Zhang J, Li Y, Zhang Z, Wang J. Pitch-based ribbon-shaped carbon-fiberreinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon, 68, 413 (2014). http://dx.doi.org/10.1016/j.carbon.2013.11.018.
  9. Xu R, Chen M, Zhang F, Huang X, Luo X, Lei C, Lu S, Zhang X. High thermal conductivity and low electrical conductivity tailored in carbon nanotube (carbon black)/polypropylene (alumina) composites. Compos Sci Technol, 133, 111 (2016). http://dx.doi.org/10.1016/j.compscitech.2016.07.031.
  10. Han S, Lin JT, Yamada Y, Chung DDL. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon, 46, 1060 (2008). http://dx.doi.org/10.1016/j.carbon.2008.03.023.
  11. Han B, Zhang L, Zhang C, Wang Y, Yu X, Ou J. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials. Constr Build Mater, 125, 479 (2016). http://dx.doi.org/10.1016/j.conbuildmat.2016.08.063.
  12. Hambach M, Möller H, Neumann T, Volkmer D. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100 MPa). Cem Concr Res, 89, 80 (2016). http://dx.doi.org/10.1016/j.cemconres.2016.08.011.
  13. Fu X, Lu W, Chung DDL. Ozone treatment of carbon fiber for reinforcing cement. Carbon, 36, 1337 (1998). http://dx.doi.org/10.1016/S0008-6223(98)00115-8.
  14. Chen PW, Chung DDL. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater Struct, 2, 22 (1993). http://dx.doi.org/10.1088/0964-1726/2/1/004.
  15. Babkina LA, Prokopenko MI, Soloshenko LN, Zinchenk VL, Stepanyuk NA, Gerashchuk YA, Il'chenko NV. Development of compositions of highly refractory mortars. Refract Ind Ceram, 41, 137 (2000). http://dx.doi.org/10.1007/BF02693772.
  16. Lu Y, Li N, Li S, Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Constr Build Mater, 95, 74 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.07.114.
  17. Dai Y, Sun M, Liu C, Li Z. Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem Concr Compos, 32, 508 (2010). http://dx.doi.org/10.1016/j.cemconcomp.2010.03.009.
  18. Simon KM, Kishen JMC. Influence of aggregate bridging on the fatigue behavior of concrete. Int J Fatigue, 90, 200 (2016). http://dx.doi.org/10.1016/j.ijfatigue.2016.05.009.