
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, Oct. 2016 4902
Copyright ⓒ2016 KSII

Survey on Network Virtualization Using
OpenFlow: Taxonomy, Opportunities,

and Open Issues

Ahmed Abdelaziz1*, Tan Fong Ang1, Mehdi Sookhak1, Suleman Khan1 , Athanasios Vasilakos2,
Chee Sun Liew1, Adnan Akhunzada1

1 Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur,
Malaysia

Email: [ahmedaziz, suleman]@siswa.um.edu.my, angtf@um.edu.my, am.sookhak@ieee.org,
csliew@um.edu.my]

2 Lulea University of Technology, Sweden, Department of Computer Science, Electrical and Space
Communications 97187, Lulea,Sweden

[th.vasilakos@gmail.com]
* Corresponding author: Ahmed Abdelaziz

Received August 15, 2015; revised December 10, 2015; revised April 18, 2016;

accepted August 23, 2016; published October 31, 2016

Abstract

The popularity of network virtualization has recently regained considerable momentum
because of the emergence of OpenFlow technology. It is essentially decouples a data plane
from a control plane and promotes hardware programmability. Subsequently,
OpenFlow facilitates the implementation of network virtualization. This study aims to
provide an overview of different approaches to create a virtual network using OpenFlow
technology. The paper also presents the OpenFlow components to compare conventional
network architecture with OpenFlow network architecture, particularly in terms of the
virtualization. A thematic OpenFlow network virtualization taxonomy is devised to
categorize network virtualization approaches. Several testbeds that support OpenFlow
network virtualization are discussed with case studies to show the capabilities of OpenFlow
virtualization. Moreover, the advantages of popular OpenFlow controllers that are designed
to enhance network virtualization is compared and analyzed. Finally, we present key
research challenges that mainly focus on security, scalability, reliability, isolation, and
monitoring in the OpenFlow virtual environment. Numerous potential directions to tackle the
problems related to OpenFlow network virtualization are likewise discussed

Keywords: Software Defined Networks, OpenFlow, Network Virtualization, Testbeds

http://dx.doi.org/10.3837/tiis.2016.10.015 ISSN : 1976-7277

mailto:angtf@um.edu.my
mailto:am.sookhak@ieee.org
mailto:th.vasilakos@gmail.com

4903 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

1. Introduction

Network virtualization (NV) creates a logical, virtual network, by decoupling network
functions from the hardware that deliver them. Basically, all network functionality is
separated from the underlying hardware and simulated as a “virtual instance”. NV today is
designed to create virtual networks within a virtualized infrastructure, which makes the
network much more portable and scalable. The physical devices are simply responsible for
the forwarding of packets, while the intelligence of the network is delivered by software. The
decoupling of the control and forwarding planes delivers superior operational efficiencies
and reduces costs, due to hardware independence. In general, a virtualized network can offer
all the features and guarantees that a physical network could offer, only with greater agility
and flexibility.

This unique feature of OpenFlow (OF) [1] can be used towards achieving network
traffic isolation. By grouping together flows with different characteristics we create logical
partitions of the common physical network infrastructure. If we map these groups of flows to
different logical partitions and store this mapping in a centralized entity that has a complete
image of the physical network, we will have created a flow-based virtual network abstraction
on top of the physical overlay.

OpenFlow is a revolutionary idea in computer networking. This new technology has
become popular and has received a significant amount of attention from the academia and
related industry. OpenFlow is a novel networking concept, in which the forwarding hardware
is decoupled from the control plane. This separation provides a more flexible, programmable,
vendor-agnostic, cost-effective, and innovative network architecture. Moreover, network
virtualizations (NVs) [2] have become a well-known technology that allows for the
virtualization of OpenFlow-based network infrastructure with optimization, performance
isolation, and minimal cost of hardware resources. OpenFlow NVs offer businesses a more
comprehensive means to create scalable and manageable resources that utilize hardware.

Despite the significance of NVs, the current architecture of NVs is far from being ideal
[3]. Conventionally, NVs employed IEEE 802.1Q [4]in virtual local area network (VLAN)
tagging for virtualizing networks, wherein only 4,096 VLANs are attached. Therefore, NVs
give rise to the scalability problem [5]. To overcome this limitation, IEEE introduced
802.1ad [6] to double the number of OpenFlow VLANs (4,096 ×4,096) by extending the tag
attached. Several researchers [7];[8, 9] believe that this technology provides isolation, high
security, and effective broadcast domains. However, VLAN only handles a set of MAC or IP
addresses that point to one virtual network. For example, an end point in VLAN that belongs
to only one virtual network shows that the approach is not flexible. In addition, VLAN
cannot assign a certain MAC address to more than one virtual network. Layer 3 network
virtualization in VLAN is also subject to subnet network. Therefore, adopting a single
technology, such as VLAN tagging or MPLS labelling [10] cannot address all the limitations
of current network virtualization such as . The aforementioned current technologies generate
logical partitions from the physical network without providing a complete framework to
perform network virtualization. OpenFlow NVs overcome most of these limitations and
provide a framework that enables end users to fully manage and control their virtual network.
However, several new research challenges associated with OpenFlow NV, such as isolation,
monitoring, and security, have emerged. In this study, a comprehensive survey on OpenFlow NVs
is conducted.

https://www.sdxcentral.com/resources/network-virtualization/whats-network-virtualization/
https://www.sdxcentral.com/term/network/
https://www.sdxcentral.com/term/packet/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4904

The concept of multiple coexisting networks is not new for many years, network

equipment has supported the creation of virtual networks in the form of VLANs[11] and
virtual private networks (VPNs) [12]. Therefore, many forms of NV have been presented,
including the overlay network, virtual sharing network. Virtual Telnet Networks (VTN)
[13]was proposed recently by OpenDaylight. VTN is a software defined network (SDN)
controller that allows users to create and manage their virtual network dynamically. This
technology offers opportunities to reduce operating expenses and easily deploy and
configure multiple virtual networks for end users.

The idea of separating the control framework from underlying switches to create NVs
dates back to 1998 when Merwe et al.[14]proposed the Tempest framework. The Tempest
framework involves slicing the resources of switches among controllers; this partitioning or
slicing is called switchlet. It is aims to provide a multi-virtual switch for each controller or
group of controllers to have individual virtual networks.

The second attempt at NV was in a virtual network infrastructure (VINI)[15].VINI
allows researchers to deploy and evaluate research ideas with an actual routing software,
traffic loads, and network events. Researchers employ Internetin a Slice (ILAS) to conduct
experiments; this network architecture consists of five components: a forwarding engine, a
control plane, overlay ingress, an overlay egress, and distributed machines. ILAS utilizes a
Click modular software router [16] as its virtual data plane and the extensible open router
platform (XORP) routing protocol [17] as the control plane. The Click modular provides the
illusion of point-to-point links to other virtual nodes and enables the virtual nodes to forward
data packets. XORP manages numerous routing protocols, such as the border gateway
protocol (BGP), open shortest path first (OSPF), routing information protocol (RIP),
protocol independent multicast-sparse mode, internet group management protocol, and
multicast listener discovery. Separating control and data planes in this manner means that
XORP can run in a different slice or even on a different node from that of Click.

In 2007,Feamster et al. [18]introduced Cabo, which aims to divide ISPs into two
distinct entities: infrastructure and service providers. An infrastructure provider owns the
network equipment (e.g., routers and links) that form an infrastructure network. A service
provider establishes agreements with one or more infrastructure providers for access to a
share of these router and link resources. Cabo facilitates the sharing of physical resources by
subdividing a physical node (i.e., router) or link into many virtual nodes and virtual links. A
virtual node controls a subset of the underlying node resources and guarantees isolation from
other virtual nodes running on the same machine. Similarly, a virtual link is formed from a
path through the infrastructure network and includes a portion of the resources along the path.
Cabo can guarantee bandwidth or delay properties on these links by using schedulers that
arbitrate access to shared resources, such as CPU, memory, and bandwidth.

4905 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

Fig. 1. OpenFlow specification history

OpenFlow was introduced recently as a new technology to facilitate NV. Fig. 1 shows
the development steps of OpenFlow. OpenFlow was proposed by Nick McKeown [19] in
April 2008. Two OpenFlow specifications (1.0 and 1.1) were then introduced in 2009. In
March 2011, several important organizations, such as Google, Microsoft, and Cisco,
established Open Networking Foundation (ONF), which is responsible for issuing OpenFlow
specifications. In 2012 and2013,many OpenFlow versions were released. These versions
have new features, such as multi-flow, group, and meter tables. The latest OpenFlow
specification, OF 1.4, was released in October 2013. This recent version has new additional
features, such as bundles and synchronized flow table. The key contributions of this paper are
highlighted below:

• A critical discussion on OpenFlow NV compared with traditional NV
• Devising a thematic taxonomy of OF network virtualization based on three different

approaches
• Compared and analyzed popular testbed that used OF to provide virtual experimental

environment
• We present key research challenges and future research directions for OF network

virtualization.

This paper is organized as follows. Section 2 presents the OpenFlow components and the
relationship between those components. Section 3 provides a definition of the NV layer in
different architectures. Our taxonomy is discussed in detail in Section 4. Section 5 presents
numerous Testbeds that provide a virtual network for OF experimental environments
including case studies that show capabilities of OF virtualization. In section 6, the
advantages of the recent OF proxy controller that is developed to enhance OF virtualization
is discussed. Key research challenges and future research directions are presented in Section
7. Section 8 presents the conclusion

2. OpenFlow Components

The OpenFlow architecture [20] consists of three main components: OpenFlow controller,
which is called the control layer; OpenFlow device (switch), which refers to the data layer;
and OpenFlow protocol [19], which is actually the transportation layer where
communication between a switch and a controller occurs. Fig. 2 shows the components of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4906

OpenFlow architecture. The main feature of the OpenFlow architecture is that the control
and data planes are decoupled and abstracted from each other. The northbound interface
[21] above the OpenFlow controller allows users to develop their own applications at the
application layer, and the southbound interface provides standard API to facilitate the
communication between the OpenFlow controller and the OpenFlow switch.

2.1 OpenFlow switches
An OpenFlow switch is responsible for capturing, manipulating, and matching packets

against flow table entries. The main function of OpenFlow switch is processing the transit
traffic based on controller police which decides what to do with packets arriving on an
ingress interface. It is manage a number of flow tables and each flow table contains a set of
flow entries with their associated actions. OpenFlow switches can have one or multiple flow
tables and a different group table that sometimes refers to an OpenFlow pipeline [22],in
which a packet interacts with these flow tables. OpenFlow switches are divided into two
types: pure (OpenFlow only) and hybrid (OpenFlow enabled)[23]. Pure OpenFlow switches
have no legacy features or on-board control. These switches completely rely on the
controller to forward decisions. Hybrid switches support OpenFlow as well as traditional
operation and protocols. Table 1 presents a flow table composed of a header field, counter,
instruction, timeout, propriety, and cooks.

OpenFlow Controller

OpenFlow Switch

OF Application

OF Application

OF Application

Transpor
tation
Layer

Security
TLS

Application
Layer

Application
Layer

Application Layer

Data Layer

Fig. 2. OpenFlow architecture

4907 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

Table 1. Flow Table

A match or header field consists of fields that cover layers1 to 4. A switch works at layer

2 and uses Ethernet source, Ethernet destination, Ethernet type, MPLS, and VLAN tag. The
routers search for IPv4, IPv6, and port number to process packages. A firewall uses four
layers, namely, TCP, UDP, PBB, and ICMP, to build rules. These differences in layer
options provide increased flexibility and diversify the range of rules in the flow table of an
OpenFlow-enabled switch. These values of match fields are specified by either a wildcard,
which is utilized when the match value is unimportant or exact, or a value that is exactly
defined. Table 2 presents a comparison of the header fields in the OpenFlow switch
specifications.

The “counter” field provides statistics for each matched flow entry. This field includes
various parameters, such as received packets, received bytes, duration, transmitted packets,
and transmit/receive errors [24]. Counters can be maintained per flow entry, port, queue,
group, group bucket, meter, and meter band. Handling all counter parameters is not
compulsory for a switch; a switch handles only those parameters that are marked (required).
A switch is considered a useful tool to troubleshoot and monitor networks.

Each flow entry is associated with a set of instructions or actions that change a package.
When an incoming package matches the rule in the flow entry, an action is required. The
action might be forwarding a package to a specified port or dropping the package. OpenFlow
involves two types of actions: required and optional[25]. A required action must be
supported in switches; whereas optional action is set based on the network requirements and
could be a query by an OpenFlow controller. For more details, one may refer to[26].

Table 2. Comparison of the header fields in OpenFlow specifications
Header Field Description OpenFlow Specification

 1.0 1.1 1.2 1.3 1.4
Ingress port Physical or logical port     

Ethernet Ethernet source and distinct MAC address     

Ether type Ethernet frame type     

VLAN id Input VLAN ID (0x8100)     

Header Fields – Match Field C
ounter

Instruction

Priority

T
im

eout

C
ookes

L1 L2 L3 L4

Ingress Port

M
etadata

Ethernet Source

Ethernet
D

estination

Ethernet type

 V
LA

N
 ID

M
PLS label

M
PLS Traffic

C
lass

IP V
4/6 source

IP V
4/6

destination

TC
P/U

D
P/SC

TP
source Port

TC
P/U

D
P/SC

TP
destination Port

PB
B

 U
C

A

* * * * * * * * 192.168.1.2

* * * *

Flow Enter1

* * * * * * * * * * 120

* *

Flow Enter2

* * * * * 20

* * * * * * * Flow Enter3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4908

VLAN priority Input VLAN priority (0x8100)     

IPv4 Src or dst IPv4 source and destination address     

IPv6 src and dst IPv6 source and destination address X X   

IPv4 proto/ARP Apply to IP, IP over Ethernet, RIP
package

    

IPv4 Type OpenFlow
Service

Ever package with Ethernet type 0x0800     

Transport src/dst port TCP,UDP, and ICMP source or
destination port

    

Metadata Data passed between tables (pipeline
process)

X    

MPLS label MPLS label X    

MPLS class MPLS traffic class X    

PBB service Service instance tag X X X  

2.2 OpenFlow channel
The main function of OpenFlow channel is provide secure communication between the

controller and switch, where a set of OpenFlow-defined messages can be exchanged. This
channel is the interface that connects the switch to the controller. The default TCP port of a
controller is 6633 which was revised to 6653 in OpenFlow switch specification 1.4 [27].

During the first communication between the controller and switch, authentication must be
performed by exchanging user-configurable certificates. If the connection between the
switch and controller is disrupted by the echo request timeout or TLS session timeout, the
switch must endeavor to contact a backup controller. If the switch fails after a few attempts,
the switch must proceed to emergency mode and immediately reset the current TCP
connection. The OpenFlow controller exchanges messages with the switch via a security
channel. These messages are divided into three types [28]:controller–to–switch messages
that may or may not receive a reply from the switch, symmetric messages that are sent from
the switch or controller without solicitation, and symmetric messages that indicate the status
of the switch. These messages are shown in Table 3.

Table 3. Messages between the switch and controller via the OpenFlow channel
Type Message Description

Controller-
to-switch

Features Controller: sends when a TLS session is established
Switch: must reply with a features reply

Configuration Controller: sends query configuration parameters
Switch: responds to a query from the controller

Modify-State Controller: used to manage the state of switches
Read-State Switch: statistics parameters sent to the controller
Packet-out Controller: instructs the switch to send packets to an OpenFlow

specified port
Barrier Controller: Barrier request/reply messages are used to ensure

that messages have been met or to receive messages

Symmetric

Hello Controller: sends when a connection is setup
Switch: sends when a connection is setup

Echo Controller: Uses echo request/reply for the liveliness of
OpenFlow controller-switch connection and indicates the
latency and bandwidth

4909 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

Switch: request/reply to/from the controller
Vendor These messages provide a standard means for OpenFlow

switches to obtain additional functionality within the OpenFlow
message type space for future revisions of
OpenFlow

Asynchronous

Packet-in Switch: sends all packets that do not match the controller
Flow-
Removal

Controller: removes flow table entries by using DELETE or
DELETE_STRICT message commands

Port-status The switch is expected to send port-status messages to the
controller as the port configuration state changes

Error The switch is able to notify the controller of the OpenFlow
problems by using error messages

2.3 OpenFlow controller
The controller is the main device responsible for

managing, controlling, and manipulating flow tables in the switch. OpenFlow
controller functions as a network operating system that views a comprehensive network
topology and manage OpenFlow switch via secure communication channel. In SDN
architecture, programmability is a key feature that enables companies and network carriers to
rapidly change business requirements [26]. Hence, the OpenFlow controller provides two
interfaces: a southbound interface (e.g., OpenFlow) that allows switches to communicate
with the controller and a northbound interface that presents a programmable API to network
control and high-level policy applications and services. Normally, the OpenFlow Controller
runs on a computer with different control configurations depending on the following: flow
type (flow routing, aggregated),behavior type (reactive, proactive) [29], and location. Table
4 shows OpenFlow controllers and their main features.

Table 4. Well-known OpenFlow controllers and their main features
Controllers Language Features

NOX [30] C++ -

Python
Fast support, asynchronous IO

POX[31] Python Performs well compared with NOX applications
written in Python (especially when operating
under PyPy)

Beacon[32] Java Cross-platform, modular, Java-based controller that
supports both event-based and threaded operations

Floodlight [33] Java Can manage both OpenFlow and non-OpenFlow
networks

Maestro[34] Java Provides view abstraction to group related network
states into a subset

Trema[35] Ruby/C A full-stack programming framework that allows
users to develop and test OpenFlow controllers on a
laptop

OpenDayLight[36] Java Employs OSGi framework and provides REST API
Ryu[37] Python Can be integrated with OpenStack, builds a virtual

network without using VLAN

http://searchnetworking.techtarget.com/definition/asynchronous
http://searchcio-midmarket.techtarget.com/definition/input-output
http://pypy.org/
http://whatis.techtarget.com/definition/framework

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4910

Special purpose controllers
FlowVisor[38] Java Utilized to add a level OpenFlow network

virtualization to OpenFlow networks
RouteFlow[39] C++ Provides virtualized IP routing over OpenFlow

hardware
ONOS [40] Java Builds service provider networks with good

performance, scale-out design, and high availability

3. Network Virtualization Layer

Conventional network architecture supports single control plane and single data plane,
as shown in Fig. 3. For example, in the router, the control plane is responsible for running
network controls, such as routing algorithms (e.g., RIP, OSPF, and BGP).At the same time,
the router manages network control protocols (e.g., ICMP), in which the forwarding tables
and hardware data paths are implemented.

To virtualize the network, a virtualization layer is placed at a particular level in the

network element architecture to allow the coexistence of multiple virtual network elements
over a single physical network element. Assuming that this layer is placed between the
control plane and the data plane and the control plane is virtualized the data plane is shared
by all virtual networks. For example, in VLAN, switches are required to manage existence
VLANs that configured based on Port Member, MAC address or IP address. This approach
and other approaches used in confidential network such as MPLS, are limited. In SDN, the
data plane is decoupled from the control plane. This separation provides a more flexible
network virtualization with strong isolation between VNs or slices. Each virtual control
plane in a slice has access to only a part of the data plane and cannot interfere with the other
parts. Fig. 4 illustrates virtualization resource abstraction in SDN that allows for the division
of a resource into several slices. Similar to the actual resource interface, this abstraction
creates a software layer that yields a virtual sliced interface. The virtualization layer
decouples the real resource and the above layer and creates several virtual slices over the
same resource. Hence, the traffic between the slices is isolated.

Controller Plane

Controller Plane

Data Plane Layer

Fig. 3. Conventional network architecture

4911 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

4. OpenFlow Network Virtualization

The developed taxonomy aims to provide an overview of the approaches and methods
offered by OpenFlow to implement network virtualization. Fig. 5 shows the elements that
comprise our OpenFlow virtualization taxonomy. The main elements and their sub-elements
are described in the following sections. The NV-based OF taxonomy consists of three main
categories, namely, proxy virtualization, layer 2 virtualization, and programming
virtualization. Proxy virtualization basically refers to a transparent proxy virtualization layer,
which is located between the controller and the switch, to create slices between virtual
networks. Sherwood, R. et al. [38] proposed FlowVisor, a special type of controller placed
between a control plane and a data plane to create slices as a set of flows running on a
topology of switches to ensure the operations of the guest controller.

One of the limitations of FlowVisor in terms of virtual topology is that it is a sub-set of
physical topology. Salvadori [41]attempted to overcome this limitation by allowing users to
customize their topology. Moreover, FlowVisor does not authorize access to slices, which is
considered a significant feature in Testbeds. The NITOS Testbed employs the NITOS system
to provide authorized access to a user to ensure that the user can only access a particular slice.

OpenFlow technology also allows the use of layer 2 prefixes-based virtualizations, such as
VLAN ID, MAC, and MPLS, to implement NV without using tunnels. Many researchers
[42];[43, 44] proposed the use of layer 2 to implement NV; some of them implemented this
approach with FlowVisor, whereas others used a module in the controller to handle packages
based on layer 2 prefixes(discussed in detail in Section 5.2).

Many programming languages for OpenFlow, such as Frenetic, have emerged recently.
These languages provide an alternative means to create isolated network slices. Gutz, S. et
al.[45]established a semantic slice approach that ensures the processing of packets on a slice
(separated from one another). Chen, Y. et al.[46]introduced a virtual network management
component that allows the creation and management of VNs in OpenFlow based on a
programming module in a controller without using a visualization layer. We discuss
programming virtualization is Section 3.3.

Fig. 4. Virtual slices in a network

Substrate network

Network Virtualization

VN1 VN4 VN2 VN3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4912

Fig. 5. Network virtualization-based OpenFlow taxonomy

Table 5 shows the reviewed studies classified based on our taxonomy. The studies

are also divided based on the SDN layer; the data layer refers to switches, and the controller
refers to an SDN controller in the control layer. The last column shows whether the study
provides a solution or merely an enhancement.

Table 5. Classifications of the network virtualization studies based on OpenFlow

Publication Taxonomy – Classification SDN layer Virtualization
 Proxy

Virtualiza
tion

Program
ming
Virtualiza
tion

Layer 2
Virtualiza
tion

Data
layer

Ctrl
layer

App
layer

Enhance
ment

Solution

[38]   
[41]   
[47]   
[48]   
[49]   
[50]   
[42]  
[51]  

OpenFlow Network
Virtualization

Programming
Virtualization

Semantic slices

Controller Module
Program

Layer 2
Virtualization

MPLS - GMPLS
Based

VLAN Based

MAC Address
Based

Subsets to Physical
Topology

Proxy Virtualization

User Access

Network Topology

Customized
Topology

Authorized Access

Non - Authorized
Access

4913 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

[43]  
[45]   
[46]   
[52]   

4.1 Proxy virtualization
The principle of the SDN architecture allows the separation of the data plane from the

control plane and for multiple controllers to be connected with a single switch. A special
type of controller called FlowVisor works as a transparent proxy between two controllers.
FlowVisor implements NV by placing the FlowVisor between a guest controller and a
physical network. Initially, the aim of the FlowVisor controller is to allow researchers to
perform experiments without VNs interfering with one another. Fig 7 shows the FlowVisor
architecture. In this section, we discuss several studies that applied FlowVisor as a proxy for
NV.

Sherwood, R. et al.[38]proposed a novel approach to the NV layer or FlowVisor and
referred to switch virtualization, in which the same hardware forwarding plane can be shared
among multiple logical networks; each virtual network adopts a distinct forwarding logic.
FlowVisor divides a network into slices that host several guest controllers. Each slice is
controlled by the private OpenFlow controller, which controls and observes its own slice.
FlowVisor insulates one slice from another, including the data path traffic that belongs to the
slice, and the control of the slice. Each slice has a particular hypervisor that includes a
flowspace and a guest controller. This flow space uses a package header field to define a set
of characterized flows, and the guest controller is assigned by different IDs and separate
queuing buffers. FlowVisor provides conflict resolution among slices by tracking the flows
of each slice. Fig. 6 illustrates FlowVisor that prevents conflict and creates complete
isolation of slices. For example, FlowVisor receives a flow table from NV1 and modifies it
according to the guest controller’s configuration. Several studies have been performed based
on this approach, where most of the studies attempted to enhance this approach and
overcome several limitations of FlowVisor.

Fig. 6. FlowVisor mechanism

Controller 3 Slice

OpenFlow
Controller 3

Polices
Controller 2 Slice

Controller 1 Slice

Transparent

OpenFlow Switch

Forwarding

OpenFlow
Controller 1

OpenFlow
Controller 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4914

FlowVisor lacks several features, such as virtual topologies and sharing of flow space by
two slices without interfering with each other, to enable a full implementation of NV.
Salvadori, E. et al. [41]proposed Advanced Flow Visor (ADVisor) to overcome the
limitations of FlowVisor. Unlike FlowVisor, ADVisor functions as a proxy virtualization
and responds directly to the OpenFlow network to enable the definition of logical topologies
that are isolated from the underlying physical network.

Azodolmolky, S. et al. [47]proposed Optical FlowVisor , which employs a PLI-aware
virtual optical network composer and a virtual network constructor. Virtualization of an
optical switch is achieved by partitioning or aggregating physical optical switches. The
associated virtual optical links are defined as the connections among virtual nodes. The
granularity of virtualization links depends on the underlying technology (e.g., wavelength
channels in a single fiber provided by WDM transmission), which can guarantee the
isolation of virtual links while sharing the same physical infrastructure.

VeRTIGO, which is an OpenFlow software that defines a networking platform designed
for NV, was proposed in a previous study [48]. VeRTIGO adds an extra feature to
FlowVisor, where an infrastructure provider allows customers to obtain different views of
the network through various OpenFlow controllers depending on the needs of customers.
The customer can select from two options. The first option is full virtual network, where the
customer has full control of the network. The topology should be fully customizable
according to the needs of the customers. The second option is single (abstract) node, where
the customer concentrates on routing policies while leaving the management of the
underlying physical layer to the infrastructure provider. The infrastructure provider can
differentiate its OpenFlow according to the service level required by customers (e.g.,
maximum latency or packet loss between two node ports).

A simple virtual topology performed through a web-based control framework [49] has
also been introduced. This OpenFlow software allows the reservation of network resources
(nodes, links, and bandwidth) and the management of virtual resources (virtual links and
virtual ports) based on ADVisor. In ADVisor, virtual topologies are identified through a set
of tuples included in the configuration files and by specifying each component of a virtual
topology (virtual nodes, virtual links, and virtual ports). The flow space of each switch in the
network is partitioned among the virtual topologies through the combinations of bits that
involve only the OSI-layer 2 fields of the packet header, such as VLAN ID, MPLS labels, or
IEEE 802.1ad-based multiple VLAN tagging.

Xingbinset al.[52] proposed virtualization based on double FlowVisors (VPDF) in a
multiple domain production network. VPDF provides network abstraction for physical
networks with a unified API. Xingbinargued that VPDF aids in building a virtual network
application that can provide a high resource utilization rate and reduced blocking probability.
Fig. 7 shows the VPDF platform that consists of flow visors 1 and 2. FlowVisor 1 is placed
between multiple guests OpenFlow controllers and OpenFlow enabled switches. The flow
visor is responsible for creating strong isolation of network slices, managing rich extensible
policies, dividing link bandwidth, and managing flow tables. FlowVisor 2 is located between
the guest control and application layer, provides API for the application layer, and virtualizes
NOS.

4915 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

Fig. 7. VPDF virtualization platform

4.2 Layer 2 virtualization
Tsai and P.W. et al.[42]introduced a virtualized architecture to extend the controllability

of VLAN tags through an implemented control module in the OpenFlow controller. Through
this tag control in the control plane and a set of configurations in the flow table, the
management of VLAN tags is addressed in the control plane and leaves the data plane
processed tagged traffic transparent in the line rate.

Matias, J. et al. [51]proposed a virtualization framework for Cloud. The framework
involves the use of the MAC addressing scheme to achieve NV and overcome scalability
problems. The authors argued that to virtualize the physical network infrastructure,
implementing a proper abstraction of virtual elements is required. The proposed approach
defines three different types of virtual elements,namely, virtual hosts (vhost), virtual nodes
(vnode), and virtual links (vlink). When a frame enters a vnode, the appropriate match field
is utilized to search for the virtual table and determine the corresponding output port to
which the frame would be sent.

Matias, J. et al. [43]proposed NV based on layer 2 prefixes using the layer 2 prefix-based
NV (L2PNV) approach. This approch decouples different slices and allows users to have
several virtual networks depending on the MAC source/destination. L2PNV allows for the
use of VLAN, Q-in-Q, MAC-in-MAC, or MPLS transparently without using tunnels.

Several studies [44, 53] proposed integrated MPLS and GMPLS to achieve NV. Das et al.
[44] proposed a unified architecture that combines OpenFlow with a packet and circuit
network to speed up innovations and reduce Capex and Opex significantly. Sharafat et al.
[54]introduced MPLS-TE and VPN services managed by an application layer of the NOX
controller. NOX handles all MPLS features, whereas the OpenFlow switch manages push,
swap, and pop actions. NOX modifies flow tables according to their respective switches
subject to any changes required on the data plane.

4.3 Programming virtualization
Several high-level network languages, such as Frentic, Netcore, and Procera, have been

developed based on comprehensive API. Given the limitations of the virtualization layer,
such as isolation and flow entry conflict, many studies haveintroduced network programing
languages and modules to achieve NV without a middle layer. In this section, we present
OpenFlow NV using a network programming language.

FlowVisor 1

OpenFlow Switch

FlowVisor 2

App App App App

OpenFlow Controller OpenFlow Controller OpenFlow Controller

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4916

Gutz and Story[45] introduced the semantic isolationof network slices by using a
programming language while ensuring that the processing of packets on a slice is
independent of all other slices. The authors introduced a slice that extends the network,with
new logical switches that can be configured similar to an ordinary switch. The semantics of a
slice can achieve two simple principles:a packet entering a slice and packet processing.

Existing NV methods in the OpenFlow network usually have limitations, such as
introduction of a proxy, flow entry conflict, and lack of extensibility. Similarly,
[46]presentedvirtual network management component (VNMC) torapidly create, configure,
and manage virtualnetworks in the OpenFlow network. VNMC is implemented in a single
controller without a middle layer. VNMC provides bandwidth guarantee, topology isolation,
flow isolation, and control isolation. Moreover, it allows virtual networks to be extended
easily because these networks are modular.

5. Testbeds Based on OpenFlow NV

This section presents a discussion of various types of Testbeds that employ OpenFlow
technology to allow researchers to perform experiments by creating a virtual network while
ensuring that VNs are isolated from one another. Table 6provides a summary of the
Testbeds.

Table 6. OpenFlow Testbeds

Testbed
s

Projects Tools,
Platforms,
and
Framework

Granul
arity of
Virtuali
zation

Emphasis Layer
of
Virtuali
zation

Overlay
\Cluster

Publicati
on

FIBRE

None (CMF):contr
ol and
monitoring
framework
Zenoss:
monitoring
resources

Like -
note

Wireless
and
optical
communicatio
ns

L2–L3 Cluster [55]

FITS FITS Xen Full Security L2–L3 Cluster [56]
OFELI
A

Europea
n FP7

OCF Full Future Internet
Testbed
facility

Layer 2 Cluster [57]

TWAR
EN

TWARE
N

VPLS service
VM manager
module

Full Future Internet
Testbed
facility

Layer 2 Cluster [58]

FiRST
@PC

FiRST NetFPGA
platforms

ENVI

Full QoS Layer 3 Overlay

[59]

NITOS OpenLa
b

NITOS
scheduler

Full Wireless Layer 1
Switch
port

Overlay [50]

EmPO CREAT Energino, Full WiFi - L2 Overlay [60]

4917 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

5.1 FIBRE
FIBRE (Future Internet Testbeds/experimentation between Brazil and Europe) is one of

five projects that were approved in response to the 2010 Brazil-EU Coordinated Call in ICT,
jointly funded by CNPq (the Brazilian Council for Scientific and Technological
Development) and by the European Commission within its Seventh Framework Programme
(FP7). FIBRE was launched in October 2011

The Testbed employs FlowVisor to provide virtualization of resources, such as nodes,
network devices, and networks. In addition, FIBRE utilizes a control and monitoring
framework (CMF). CMF allows the central management site to facilitate and control access
to virtualized computing and network resources. CMF also provides support for the
measurement of resource usage. One of the important components of the architecture of
FIBRE is MySlice. MySlice is a software layer that allows federation abstraction and
integration of different FIBRE Testbeds. FIBRE provides a web-based interface that enables
users to interact with a large volume of results generated by each Testbed island.

5.2 FITS
Future Internet Testbed with Security (FITS) provides was launched in 2011. It provides

an opportunity to increase cooperation among those universities aiming at managing and
configuring virtual networks. It is provides two main approaches to virtualize a network:
virtualization of an entire network element implemented using Xen technology (which has
both control and data planes inside) and decoupling of the control plane and data plane
through the use of OpenFlow to virtualize the data plane only. FITS virtualizes a data plane
and offers two modes, namely, decentralized or centralized. In the decentralized mode (Fig.
8), each virtual network slice has a set of virtual network elements that contain only the
control plane, whereas in the centralized mode (Fig. 9), each virtual network slice has a

WER E-NET “chassis
manager”
allowing the
Testbed
manager to
power on/off
APs remotely

SDN&NFV

DOT DOT Central
management
module

Full SDN L2–L4 Cluster [61]

GENI GENI Flack
graphical
resource
discovery
omni
command-
line
interface
Mysliceresou
rce discovery
tool

Note/Li
nk

Future Internet
Testbed
facility

L2 Cluster [62]

ECOD
ANE

ECODA
NE

NetFPGA-
D-ITG

Note/Li
nk

Energy
consumption

L2–L3 Overlay [63]

JGN-X JGN-X - Note/Li
nk

SDN L1– L2 Overlay [64]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4918

control plane centralized in one node that configures all the data planes of the nodes in the
slice. FITS has several features, such as flexible design, efficient packet forwarding, network
migration, and security. To perform experiments in SDN, FITS provides OpenFlow slices to
researchers based on FlowVisor slices. FITS defines a slice based on twelve-tuple match
fields, which provide a range of virtualization layers (L2–L4). In addition, FITS applies
isolation techniques other than FlowVisor to isolate the four main resources in the OpenFlow
network. The four main resources are based on topology, bandwidth, memory, and processor
usage.

Experiment 1
Experiment 2
Experiment 3

5.3 OFELIA
The FIBRE Project ended in October 2014 (co-funded by the Brazilian government and

the EC). In 2015 the Brazilian institutions took over FIBRE's legacy infrastructure to start
offering the Testbed as a service. OFELIA offers OpenFlow experiment services for users;
these services allow for the development and testing of new networking ideas based on layer
2. OFELIA contains different integrated elements to generate experiments, such as
OpenFlow experimental networks that are built on OpenFlow-enabled Ethernet segment, and
is connected to virtual machines. Control and management networks are used to setup and
manage the infrastructure itself and other OFELIA internal services, such as DNS. In
addition, the control network may also be connected to another island-local infrastructure.
Optical equipment adoption in OpenFlow employs Optical FlowVisor. OFELIA enhances
the API of the current flow visor and the OpenFlow aggregate manager.

5.4 TWAREN
Founded in 2009 supported by Taiwan National Science Council (NSC) and deployed to

the TWAREN research network. In the TWAREN Testbed, each OpenFlow switch has its
own controller that resides in different domains. The controller employs link layer discovery
protocol (LLDP) messages among the switches to obtain topology information. However, the
controller in different domains cannot exchange these messages. Therefore, LLDP

Fig. 8. Centralized approach: One
Controller for each Experiment

Fig. 9. Decentralized approach, where
each controller has its own data plane

4919 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

complicates the management of the network. To overcome this problem, TWAREN modifies
LLDP messages and several applications in NOX to retrieve links among inter-domains. The
dropping policy is modified to store the received LLDP packets from different controller
domains.

5.5 FiRST@PC
FiRST@PCwas established to facilitate future Internet experiments based on OpenFlow

technology. FiRST@PC is employed by four universities in Korea (Chungnam National
University, GIST, Postech, and Kyunghee University).FiRST@PC consists of OpenFlow
controllers and OpenFlow switches integrated with NetFPGA platforms that provide QoS.
Based on switch ports and VLAN IDs, the OpenFlow switches manage slices by using a
FlowVisor controller placed between guest controllers and switches. The switches and
controllers are unaware of the process of FlowVisor and can communicate with each other
directly.

5.6 NITOS
The NITOS Testbed is managed by the University of Thessaly. NITOS combines the

functionalities of Flow Visor with the NITOS Scheduler resource reservation tool. When
users request to perform experiments, a slice is created in both NITOS resource reservation
and FlowVisor and is connected directly to the NOX controller. Users can select their own
controller and receive some node features from the NITOS Testbed. In the beginning of the
experiment, the scheduler sends commands to the FlowVisor to insert a flow space for a
specific port. At the end of the experiment, the scheduler instructs the FlowVisor to delete
the flow space from that port so that the user associated to the slice would not have access to
the switch ports anymore.

5.7 EmPOWER
EmPOWER is a unique and open toolkit for research and experimentation on SDN/NFV

over wireless and mobile networks. Its flexible architecture and the high-level programming
APIs allow for fast prototyping and validation of novel services and applications. It was
established based on SDN framework for SDN and FlowVisor research and experimentation.
This architecture consists of OpenFlow and an energy consumption monitoring and
management toolkit. Currently, EmPOWER has 30 nodes and is employed by both
undergraduate and graduate students at the University of Trento. The main components of
EmPOWER are Single Master, multiple agents, network application, and Energino. The
Single Master provides an entire view of the network infrastructure, and the multiple agents
create a logical isolation for each switch port. Network application on top of the controller
can facilitate Floodlight REST or any intermediate interpreter, such as Pyretic. Each network
application provides efficient control of an isolated slice. Lastly, Energino is an Arduino
add-on that manages and measures the energy consumption of nodes.

5.8 DOT
Distributed OpenFlow Testbed (DOT) was developed by a research group at Waterloo

University in 2013 to emulate large SDN deployments by distributing the workload over a
cluster of compute nodes. The main reason for this development is to overcome the
limitations of Mininet, such as scalability and traffic measurement. DOT is capable of
emulating a network in different physical machines and utilizes CPU time, bandwidth, and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4920

latency for all network elements (switches, hosts, and links). Moreover, DOT provides a
central monitoring point. The DOT architecture comprises two components. The first is the
central DOT manager used to allocate resources.DOT has two sub-modules, that is,
provisioning module and astatistic’s collection module. The second component is the DOT
Node Manager that allocates the required resources and collects multiple computer statistics.
However, DOT only manages a fixed number of physical machines and does not allow
multiple users to run multiple emulations on the same physical infrastructure simultaneously.

5.9 GENI
GENI (Global Environment for Network Innovations) provides a virtual laboratory for

networking and distributed systems research and education. GENI is managed by researchers
in collaboration with Stanford. GENI is utilized to develop an OpenFlow control framework.
It facilitates experiments that employ OpenFlow-controlled VLANs. Students can perform
experiments within the campus network and can connect to external GENI SDN
infrastructures. Using slices and flow space, GENI groups campus network resources. An
aggregate manager provides an experimenter access to virtualized network resources. The
flow spaces support layers 1 to 4 network virtualization, and each flow space is managed by
a controller that may run on a resource within the slice or elsewhere. Implementing
OpenFlow in a GENI-enabled campus provides several advantages. For example, OpenFlow
allows experimental implementation and production of traffic within the same network. This
approach provides benefits to both the experimenter and staff in campus. In terms of
federating, OpenFlow can be employed easily and runs in multiple campuses and backbone
resources.

5.10 ECODANE
ECODANE Testbed originally outcomes of the ECODANE project. It is combines real

network devices with emulation for providing experiment environment of new concepts of
energy-efficient data center. ECODANE is based on OpenFlow that consists of hardware
devices and a virtual emulation test environment to improve the scalability, flexibility, and
accuracy of the experimental environment. ECODANE provides an experimental
environment in the energy-efficient data center. The ECODANE Testbed architecture has
three main modules: the OpenFlow controller that is used to manage and control parts of the
network, the data center network that manages physical and emulated network devices, and a
traffic generator (a mathematical model used for real traffic traces measured in the data
center based on Internet Traffic Generator (D-ITG). In the ECODANE Testbed, researchers
can analyze different performance factors, such as energy proportionality, QoS, and
complexity.

5.11 JGN-X
JGN-X is sponsored by (NICT) National Information and Communications Technology in

Japan. It is start in 2011 aim to advance the research and development environment for New
Generation Network. It is mainly focuses on next-generation network technologies, such as
SDN. JGN-X provides experiments at several layers (e.g., layer 3) and employsIPv4 and
IPv6 with bandwidth capacity starting from 100 Mbps up to 10 Gbps. In layer 2, JGN-
Xallows for experiments via Ethernet service and VLANs. JGN-X also provides layer 1
optical Testbed services.

4921 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

5.12 Case Studies
In this section, we introduced some case studies that are currently being deployed on

various Testbeds that support NV based on OF. Four case studies have been detailed and
dominated recent example of how researchers have used Testbed to facilitate their
experiments. Table 7 shows the four case report studies which explored the use of Testbeds.

Table 7. Case Studies

References Case Testbed
[65] Video-on-Demand OFELIA
[60] Energy Programmable WiFi Networks EmPOWER
[66] Congestion Control Protocols GENI
[67] Cloud computing based collaborative manufacturing GENI

Cloud computing based collaborative manufacturing: This experiment was carried out in
Oklahoma State University, and The Ohio State University using GENI testbed. It aims to
test advanced manufacturing problems without the need of expensive local resources. It
helps users to collaborate with remote experts via virtual reality environments and other tools.
Thus, researchers and experts will be able to collaborate globally in the virtual environments
and can rapidly bring advanced products to marketplaces. The experiment example was in
the domain of Micro Device Assembly (MDA). Users from different locations can access
collaboration involving a simulation application developed by C++, propose and then modify
the assembly plans interactively for given part designs. The experiment demonstrates the
potential to build future Internet services that utilize access to high-speed networks and cloud
infrastructures. Manufacturing and cloud architects that are provided by GENI Testbed can
help the functionalities of products with less cost and user convenience.
Energy consumption in WiFi Networks: is second experiment that used EmPOWER
testbed infrastructures. It aims to reduce the actual energy consumption of WiFi
infrastructures. To achieve this goal, a real–time energy consumption monitoring with Odin,
a software, to define networking WiFi networks is used. Authors?? argue that, in WiFi
networks, the extent of energy savings is limited by the actual client distribution.
EmPOWER deployed single Master and multiple OF controller. Single Master provides a
global view of the entire network which includes clients, flows, and infrastructure while
multiple agents controller represent a set of logically slices connected to different ports of a
switch. Energino, an Arduino add–on, is used to measure the energy consumption of a
wireless device and voltage sensor and a current sensor is used as measurement circuit. Two
modes of operations are implemented: online mode and offline mode. In the Online mode, an
(Access Point) AP and all its wireless interfaces are on. In the Offline mode, the entire AP is
turned off and only the Energino is powered. The transitions between modes implemented
based on finite state machine (FSM) that is configured for possible events in the Energy
Manager module. Recently, EmPOWER added programmable wireless base stations (LTE)
that provide heterogeneous scenarios test with programmable cellular networks.
Congestion Control Protocols (CCP): In traditional network, various CCP are proposed
such as XCP, RCP. These protocols address the problem of performance issues in high-speed
networks. Due to the lack of a platform that supports deep programming inside network and
virtualization with independent slice, evaluation testing CCP is limited. In this experiment
the Binary marking Congestion Control (BMCC) protocol evaluate GENI testbed. To
achieve that OF enabled switch with NetFPGA are used, whereas OF switch provides
dynamic forward traffic to NetFPGAs that used to scale the processing. The experimental

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4922

setup in the GENI testbed includes two clients and one server that connect two OF switches
with two NetFPGA cards.
NetFPGA-1 implements the BMCC router functionality while NetFPGA-2 is connected to
client. To perform measurement, a different scenario is implemented. Scenario 1 focuses on
bottleneck utilization and packet loss rate, while scenario 2 focuses on bandwidth-sharing
properties. The comparison between BMCC and TCP flow is achieved by measuring
throughput, and response time.
Video-on-Demand: In this experiment, authors [65] proposed SDN OpenCache for video on
demand service in cloud. The solution aims to decrease the distribution load from the VoD
content provider to the end-user. In traditional network, proxy and Content Delivery
Network (CDN) are used to push content to the edges of the Internet in order to provide
higher throughput, less latency between the VoD server and the user. To measure efficacy of
OpenCache, three experiments were conducted in OFELIA Testbed that is composed of a
number of OpenFlow-capable hardware switches located in various different sites. Each site
represents “island” located in different countries connected to each other to create a large
federated experimentation environment. For example, in this case study the video client runs
on VM located on Switzerland where an OF controller is deployed on OCC and OCN in two
different sites. In the other two different OFELIA islands, Italy and at i2CAT in Spain VoD
servers were deployed and the experiment was implanted in Belgium.

6. OpenFlow advantages

In our taxonomy that is discussed in section 3, we found that the main type of the OF NV
is Proxy Virtualization. The first Proxy in OF is FlowVisor, special type of the controller
placed between SDN controller and OF enables switch to create virtualization layer. Based
on FlowVisor concept, some controllers are proposed to add more advantages. Table 8
shows five popular OF proxy controllers that enhance OF network virtualization and address
limitations of FlowVisor.

Table 8. advantages of OpenFlow proxy virtualization

Cases OpenFlow Proxy Controller Features
[68] OpenVirteX address virtualization and topology virtualization
[69] FlowN Fully tenant VNs with its own controller
[70] HyperFlex Virtualization of the control plane
[71] DFVisor reduces flow setup latency, and removes the single point of

failure in the slice network
[72] Autoslice Enhance the scalability of VNs

6.1 OpenVirteX
OpenVirteX comes to overcome the problem of flow-space that is introduced by

FlowVisor, and therefore, it builds on the design of FlowVisor. It has two advantages;
address virtualization and topology virtualization with the facility to give each tenant its own
header fields space. In the topology virtualization, tenant can customize its own arbitrary

4923 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

topology that does not have to be corresponded to the physical network. OVX stores the
mapping of NVs in the edge switches in which it re-writes the virtual IP and MAC addresses.
Such mapping allows flowspace to be provided for each NVs. On the other hand, OVX
manipulates the Link Layer Discovery Protocol (LLDP) controller message and send it back
to controller for creating the illusion topology. In addition, OVS provides address
virtualization that gives each tenants the ability to assign IP address for their end hosts. To
avoid over-lapping, IP address OVX generates globally unique tenant IDs for each tenant.
Moreover, OVX allows each VN managed by its own controller which means that a tenant
has its own ONS and applications that can program the virtual network switches. To create
the "illusion" that every controller is the only OS running in the system, OVX intercepts
control packets and multiplexes different control planes onto one.

6.2 FlowN
It is a container based on application virtualization for OpenFlow network. Each container

incudes the tenant VNs with its own controller. It provides virtual network topologies to the
tenants by entirely abstracts the physical. This abstraction grants that the virtual nodes can be
transparently migrated on the physical network without accessing the physical network.
Therefore, tenants are not concerned about the resource management actions of the nodes,
and they see only their virtual topologies. For mapping the NV to provide virtual address
spaces, FlowN uses additional database component. FlowN application virtualization can be
deployed in multiple physical servers that host databases, each one includes a particular
number of containers. To manage the resource isolation between containers, FlowN assigns
one processing thread per container. During the setup of a system, FlowN parsers the
topology via configuration file and builds the view of the network without admitting it to the
physical network. FlowN provides complete NV system for each tenant at setup time and
allows users to add nodes at run time without concerning about resources allocation which is
managed by FlowN. During the setup of a system, FlowN parsers the topology via
configuration file and builds the view of the network without admitting it to the physical
network. The main drawback for FlowN is that it is an extension of the NOX controller, and
therefore, users are limited to the capabilities of the NOX controller.

6.3 HyperFlex
Introduced as new OpenFlow proxy controller to tackle the problem of virtualization of

the control plane, whereas the existing solution focused on resource isolation of co-existing
virtual networks on the physical data-plane infrastructure. The idea of HyperFlex is to
separate the OpenFlow proxy network from the physical infrastructure to isolate the
virtualization functions from the data-plane. Therefore, it is built based on decomposition of
the hypervisor virtualization functions that allows a functional-granularity to achieve a more
tailored operation and enhance the resource efficiency. On the other hand, HyperFlex
provides translation function that mapping NVs controller messages to their physical
resources. This function could be implemented in the network elements according to their
packet inspection capabilities or use policy function that ensures the NVs controller can only
access their virtual resources. A main feature of HyperFlex is the ability to offload the load
of performing the virtualization functions between the software and the proxy network
elements. Such the feature allows exploiting the resources of the servers that host the proxy
software and extend the resources of the OpenFlow proxy network to improve the
virtualization performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4924

6.4 DFVisor
A layered overlay proxy controller that comes to improve address space in VNs, reduces

flow setup latency, and removes the single point of failure in the slice network. DFVisor has
three components enhanced OF enabled switches, enhanced VN controllers, and the
distributed synchronized two-level database system. To enhance OF switch, DFVisor
introduced three features: hybrid data forwarding that can be easily implemented into OF,
tunneling and resource slicing. Tunneling used Generic Routing Encapsulation (GRE)
module into the data plane by extending the OF switch specification. The resource slicing in
DFVisor is different from traditional slices that lacks a native network addressing
mechanism and causes scalability. It used typical statistic mechanism used in OF switch
specifications to enhance the scalability by reducing the flow setup latency. In the third
component, two-level of the database multiple local databases and a distributed global
database are implemented. Multiple local databases store the network configuration and
information and can be implemented in Apache Zookeeper wit watch service that can allow
each local database to use watchers on the global database and receive a watcher alarm when
the database are updated.

6.5 Autoslice
Distributed OF proxy controller that can handle large numbers of flow table and control

messages from multiple tenants. It is focused on the scalability of VNse by distributing the
controller load. In the FlowVisor, the first OpenFlow proxy slice technique is implemented
in the flow table inside the OF switches by partitioning it into so-called flows-paces. Such
technique enables OF switch manipulated concurrently by multiple controllers, but this
operation includes mapping VNs topologies, installing flow entries for tunneling and
enforcing flow table isolation. All these operations require considerable planning and
management resources. Therefore, Auto slice proposed to automate the deployment and
operation of VNs with minimal intervention. In addition, Autoslice optimizes resource
utilization and mitigates flow-table limitations through the monitoring of flow-level traffic
statistics. After deploying the VN, each tenant has ability to fully control the flow table that
can be sliced into logical segments irrespective of the services that the network provided.
Autoslice consists of two components; 1) a management module (MM) that maps the virtual
topology to the resources available in each domain 2) and multiple controller (CPX) that is
responsible to assign a dedicated CPX to each domain. A policy based approach is
implemented for each CPX for accessing the flow table which ensures that the flow entries
are mapped onto non-overlapping flow-spaces.
Though, the above proxy controllers provide different features and address various issues of
traditional network virtualization. Nevertheless there are several important open future
research directions for OF network virtualization in terms of security, scalability and
monitoring of VNs especially in multi tenants environment that is widely adopted in current.
In section 5 challenges and open issues are discussed.

7. Challenges and Future Research Directions

OpenFlow-based NV has become widely utilized, and controllers, such as Flow Visor,
have been further defined. Consequently, new solutions have been proposed, and new
challenges have arisen. In this section, we discuss several challenges posed by NV based on
OpenFlow. We also provide directions for future research.

4925 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

7.1 Security challenges in OpenFlow network virtualization
Security concerns are obvious in virtual networks; however, security issues that

specifically refer to virtual networks remain unaddressed[73]. These issues arise when
networks are programmable. Programmability may cause network vulnerability, subject to
the absence of well-structured policies and rules. The research community has not shown the
security level of virtual networks compared with traditional networks[74] nor provided
sufficient security measures to defend such networks. The security of network virtualization
technologies has become increasingly important. Moreover, NV based on OpenFlow
technology employs FlowVisor as a transparent proxy. We can divide security issues into
three main categories: guest controller, FlowVisor, and switch security issues.

7.1.1 Guest controller security issues
In OpenFlow NV, a user has his own controller that works as NOS[75] for a specific

virtual network. NOS contains critical knowledge of the network and is prone to attacks. An
example is the denial of service (DOS) attack, where an attacker can generate numerous
flows that overload the components, leading to network failure. Moreover, the application
layer, which communicates with the controller through the northbound interface, also
exhibits potential vulnerability as the application is prone to be reprogrammed by hackers.
The installation of compromised applications may affect the entire virtual network.

Field Rewrite is a problem that is specifically related to a situation whereas controller has
access to a specific VLAN ID tag. Field rewrite can then create flow entries with actions that
change the VLAN ID of its own packets, thereby creating an opportunity for a malicious
controller to inject packets into another slice. This occurrence actually occurs when a
controller only has access to packets with transport source port A[76]. If a controller
attempts to create a flow entry with an unspecified transport source port (wildcard),
FlowVisor should rewrite the wildcard value to the valid one (A). However, if this situation
does not occur and the flow entry is created with the wildcard field, FlowVisor can match
any transport source port. This procedure is repeated for another header value, such as
transport destination and protocol type.

7.1.2 FlowVisor security issues
Given that Hypervisor controls everything [77],it causes a single point of failure in the

virtual environment. Consequently, a single breach can cause a disaster in the entire
environment. FlowVisor provides address space isolation; some of the implementation
details of FlowVisor hinder this property. Furthermore, FlowVisor does not implement
action isolation, which means no control exists over which types of actions a controller may
set on a flow entry. Thus, it is not possible to consider that all virtual networks manage by
FlowVisor are secure. A virtual network may affect the traffic of other networks,
intentionally or not[78]. Therefore several kinds of attacks can effect virtual network that
used Hypervisor controller. For example, modify flow rules by inject packets to steal tenants
information, implemented malicious actions or faulty behaviour of the isolation mechanisms.

7.1.3 Switch security issues
Packets that originate from an untrusted host can cause tampering issues. For example,

Floodlight Controller send every 5 second LLDP packet to update network topology and
manage flow rules in the switch. With forged source addresses cause the controller to install
flow rules based on false information. TO avoid this king of attack, Role-
 based authenticated approach must be implemented for each flow rule producer. In addition,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4926

the channel between the controller and switches can also be vulnerable. whereas, the
communication between the controller and switch could be in plaintext[76]. However,
according to the OpenFlow specification, transport layer security (TLS) can be utilized to
secure the communication. TLS can be enhanced by add module that help to detect
malformed packets before send it to the controller.

7.2 Future directions and Open issues in OpenFlow network virtualization

7.2.1 Scalability and reliability
FlowVisor is a bottleneck in all virtual networks[79]. It is responsible for handling all

packets between the guest controller and the switch. Performance issues arise when too
many packets are interchanged. Many experiments on Testbeds have been conducted, with
the use of FlowVisor to create isolations among virtual networks. The results show a
significant effect, especially when numerous flows are sent. This observation indicates the
importance of scalability issues in OpenFlow NV.

In addition to reliability and the problem in network resources [80] ,such as host CPU in
the OpenFlow controller, Dabkiewicz [81] found that many new flows also seriously affect
the performance of FlowVisor. Numerous errors are recorded in the FlowVisor log file for
debugging because of some reasons. When a network disaster, such as flash crowding,
occurs, hundreds of errors arise and are recorded every second. These errors could eventually
fill the disk up and cause system failure.

In addition, increasing the number of tenants with different abstractions results in
scalability challenges. For example, increasing the number of virtual networks (each one
with different topologies) provides a means to map a rule or query issued in a virtual
network to the corresponding physical switches and to map a physical event (e.g., a link or
switch failure) to the affected virtual components.

1.1.1 Isolation
The resources of the switch are separated according to the created slices. A slice cannot

enter flow entries for a slice they do not belong to. Separating switch resources can be done
based on the application port or VLAN membership. FlowVisor ensures that only the
responsible controller can add flow entries. However, when using wildcard flow entries, such
as in experiment 7 [81], the switch resources in the separation of OpenFlow do not always
work as one would expect. In addition, the isolation provided by OpenFlow primarily
implemented in link layer for each tenant, For example, if a tenant has weak network
security procedures, information disclosure may occur, resulting in a breach of isolation at
higher layers. Moreover, a rogue SDN app with privileges that span beyond isolation borders
may impact overall network security by steering traffic to a third party (information
disclosure) by over- or under-billing (theft of service) or by dropping traffic. Thus strong
security procedures for tenants must be implemented.

1.1.2 Monitoring
Monitoring the virtual network is an important factor in open-access networks [82]. In

VTN, virtual networks are assigned to different customers who wish to monitor and manage
their network effectively. Several protocols, such as sFlow [83],can be utilized to monitor
traffic in the SDN environment. Nevertheless, NV still fails to implement an effective
monitoring system. NV may utilize an extension of current monitoring tools, such as
Nagios[84].

4927 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

1.1.3 Handling of switch events
The handling of switch events is performed by FlowVisor in a manner that the switch

events are sent to the appropriate OpenFlow controller responsible for the slice where the
switch event occurs. However, in a situation where an OpenFlow controller is only
connected to a switch port, the messages regarding the switch event cannot be sent to all
possible OpenFlow controllers. To address this issue, we can refer to only one place to look
for switch events implemented in monitor slices that obtain all switch events[81]. The switch
events are sent through the OpenFlow protocol and interpreted by FlowVisor and the
OpenFlow controller. A module that obtains the OpenFlow messages from FlowVisor and/or
the OpenFlow controller could be developed to receive all messages at a single point.

8. Conclusion

OpenFlow technology has paved the way toward next-generation networks and has
provided advanced functionality. OpenFlow technology provides network virtualization that
is versatile, flexible, and easy to manage. It also creates an opportunity to solve several
network virtualization problems, such as the network address space, virtual topology, and
tenant network management. This paper presents a comprehensive survey of OpenFlow-
based network virtualization. We began by providing a background overview of the
separation of the control framework from underlying switches to achieve NVs. We focused
on OpenFlow components and compared conventional network architecture and OpenFlow
architecture. We developed an OpenFlow-based network virtualization taxonomy that
involves three approaches, namely, proxy virtualization, layer 2 virtualization, and
programming virtualization. A comparative analysis of available OpenFlow Testbeds that
support network virtualization was also presented. Lastly, several challenges posed by
OpenFlow-based network virtualization and future research directions were discussed.

Acknowledgments

This work is fully funded by Bright Spark Unit, University of Malaya, Malaysia and

partially funded by Malaysian Ministry of Higher Education under the University of Malaya
High Impact Research Grant UM.C/625/1/HIR/MOE/FCSIT/03

References

[1] Nunes, B.A.A., et al., “A Survey of Software-Defined Networking: Past, Present, and Future of
Programmable Networks,” Communications Surveys & Tutorials, IEEE, 16(3): p. 1617-1634,
2014. Article (CrossRef Link)

[2] Chowdhury, N.M.K. and R. Boutaba, “Network virtualization: state of the art and research
challenges,” Communications Magazine, IEEE, 47(7): p. 20-26, 2009. Article (CrossRef Link)

[3] Schaffrath, G., et al., “Network virtualization architecture: proposal and initial prototype,” in Proc
of the 1st ACM workshop on Virtualized infrastructure systems and architectures, ACM, 2009.
Article (CrossRef Link)

[4] Bari, M.F., et al., “Data center network virtualization: A survey,” Communications Surveys &
Tutorials, IEEE, 15(2): p. 909-928, 2013. Article (CrossRef Link)

http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1109/MCOM.2009.5183468
http://dx.doi.org/10.1145/1592648.1592659
http://dx.doi.org/10.1109/SURV.2012.090512.00043

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4928

[5] Duan, Q., Y. Yan, and A.V. Vasilakos, “A survey on service-oriented network virtualization
toward convergence of networking and cloud computing,” Network and Service Management,
IEEE Transactions on, 9(4): p. 373-392, 2012. Article (CrossRef Link)

[6] Wang, A., et al., “Network virtualization: Technologies, perspectives, and frontiers,” Lightwave
Technology, Journal, 31(4): p. 523-537, 2013. Article (CrossRef Link)

[7] Casado, M., et al., “Virtualizing the network forwarding plane,” in Proc. of the Workshop on
Programmable Routers for Extensible Services of Tomorrow, ACM, 2010.
 Article (CrossRef Link)

[8] Wang, G. and T.E. Ng, “The impact of virtualization on network performance of amazon ec2 data
center,” in Proc. of INFOCOM, 2010 Proceedings IEEE, 2010. Article (CrossRef Link)

[9] Voith, T., K. Oberle, and M. Stein, “Quality of service provisioning for distributed data center
inter-connectivity enabled by network virtualization,” Future Generation Computer Systems,
28(3): p. 554-562, 2012. Article (CrossRef Link)

[10] Guo, C., et al., “Secondnet: a data center network virtualization architecture with bandwidth
guarantees,” in Proc. of the 6th International Conference, ACM, 2010. Article (CrossRef Link)

[11] Yadav, Y. and P. Yadav, Virtual Local Area Network, 1(11): p. 42-249, 2013.
Article (CrossRef Link)

[12] Venkateswaran, R., Virtual private networks. Potentials, IEEE, 20(1): p. 11-15, 2001.
Article (CrossRef Link)

[13] Jain, R., Introduction to Software Defined Networking (SDN), 2013.Article (CrossRef Link)
[14] Van der Merwe, J.E., et al., “The tempest-a practical framework for network programmability,”

Network, IEEE, 12(3): p. 20-28, 1998.. Article (CrossRef Link)
[15] Bavier, A., et al., “In VINI veritas: realistic and controlled network experimentation,” in Proc. of

ACM SIGCOMM Computer Communication Review, ACM, 2006. Article (CrossRef Link)
[16] Morris, R., et al., “The Click modular router,” in Proc. of ACM SIGOPS Operating Systems

Review, ACM, 1999. Article (CrossRef Link)
[17] Handley, M., O. Hodson, and E. Kohler, “XORP: An open platform for network research,” ACM

SIGCOMM Computer Communication Review, 33(1): p. 53-57, 2003. Article (CrossRef Link)
[18] Feamster, N., L. Gao, and J. Rexford, “How to lease the Internet in your spare time,” ACM

SIGCOMM Computer Communication Review, 37(1): p. 61-64, 2007. Article (CrossRef Link)
[19] McKeown, N., et al., “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM

Computer Communication Review, 38(2): p. 69-74, 2008. Article (CrossRef Link)
[20] Bozakov, Z. and V. Sander, “OpenFlow: A Perspective for Building Versatile Networks,”

Network-Embedded Management and Applications, Springer. p. 217-245, 2013.
Article (CrossRef Link)

[21] Vaughan-Nichols, S.J., “OpenFlow: The next generation of the network?” Computer, 44(8): p. 13-
15, 2011. Article (CrossRef Link)

[22] El-Azzab, M., et al., “Slices Isolator for a Virtualized Openflow Node,” in Proc. of Network Cloud
Computing and Applications (NCCA), 2011 First International Symposium on, IEEE, 2011.
Article(CrossRef Link)

[23] Azodolmolky, S., “Software Defined Networking with OpenFlow,” Packt Publishing Ltd, 2013.
Article(CrossRef Link)

[24] Mattes, J., “Traffic Measurement on OpenFlow-enabled Switches,” PhD thesis. ETH Zürich, 2012.
Article (CrossRef Link)

[25] Shahmir Shourmasti, K., Stochastic Switching Using OpenFlow. 2013.Article(CrossRef Link)
[26] ONF, https://www.opennetworking.org/. [accessed: 27/08/2014].Article(CrossRef Link)
[27] Ren, T. and Y. Xu., “Analysis of the New Features of OpenFlow 1.4,” in Proc. of 2nd

International Conference on Information, Electronics and Computer, Atlantis Press, 2014.
Article (CrossRef Link)

[28] SUZUKI, K., et al., “A Survey on OpenFlow Technologies,” IEICE TRANSACTIONS on
Communications, 97(2): p. 375-386, 2014. Article (CrossRef Link)

http://dx.doi.org/10.1109/TNSM.2012.113012.120310
http://dx.doi.org/10.1109/JLT.2012.2213796
http://dx.doi.org/10.1145/1921151.1921162
http://dx.doi.org/10.1109/INFCOM.2010.5461931
http://dx.doi.org/10.1016/j.future.2011.03.011
http://dx.doi.org/10.1145/1921168.1921188
https://708e8bd3-a-bb6ad6f3-s-sites.googlegroups.com/a/ijrit.com/papers/home/V1I11103.pdf?attachauth=ANoY7cqQoQF8E6iI-RjT7cqy-EXxG1y-sfXm-v1GhWLrruLtz7tqw-umUjnCTVC4r0FXNzUU-OIcyGG1ac-LM_DX1T469Pzym3X18ZqErzY2y1R9iRC5xUiFCg1JbNvg8-UFpkhrHsPM0eq25dn0Aq-hpgEDFQfrAgBoVCgJTwLjwWDP-kIi4YVCp0KjoFCirUdOACKv368eeFbbOcBhFGBOVbCYcV3nqA%3D%3D&attredirects=0
http://dx.doi.org/10.1109/45.913204
http://www.cse.wustl.edu/%7Ejain/cse570-13/ftp/m_16sdn.pdf
http://dx.doi.org/10.1109/65.690958
http://dx.doi.org/10.1145/1159913.1159916
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/774763.774771
http://dx.doi.org/10.1145/1198255.1198265
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1007/978-1-4419-6769-5_11
http://dx.doi.org/10.1109/MC.2011.250
https://www.google.com/patents/US8422540
http://file.allitebooks.com/20160314/Software%20Defined%20Networking%20with%20OpenFlow.pdf
http://www.diva-portal.org/smash/get/diva2:656472/FULLTEXT01.pdf
https://www.opennetworking.org/
http://dx.doi.org/10.2991/icieac-14.2014.17
http://dx.doi.org/10.1587/transcom.E97.B.375

4929 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

[29] Fernandez, M.P., “Comparing OpenFlow Controller Paradigms Scalability: Reactive and
Proactive. in Advanced Information Networking and Applications (AINA),” in Proc. of 2013
IEEE 27th International Conference on, IEEE, 2013.

[30] Gude, N., et al., “NOX: towards an operating system for networks,” ACM SIGCOMM Computer
Communication Review, 38(3): p. 105-110, 2008. Article (CrossRef Link)

[31] POX, http://www.noxrepo.org. [accessed: 27/08/2014]. Article(CrossRef Link)
[32] Erickson, D., “The beacon openflow controller,” in Proc. of the second ACM SIGCOMM

workshop on Hot topics in software defined networking, ACM, 2013. Article (CrossRef Link)
[33] Floodlight, http://www.projectfloodlight.org/floodlight/. [accessed: 27/08/2014].

Article(CrossRef Link)
[34] Cai, Z., A.L. Cox, and T.E.N. Maestro, “A system for scalable OpenFlow control,” Technical

Report TR10-08, Rice University, 2010. Article (CrossRef Link)
[35] Trema, http://trema.github.io/trema/. [accessed: 27/08/2014]. Article(CrossRef Link)
[36] OpenDayLight, http://www.opendaylight.org/. [accessed: 27/08/2014]. Article(CrossRef Link)
[37] Ryu, http://osrg.github.io/ryu/. [accessed: 27/08/2014]. Article(CrossRef Link)
[38] Sherwood, R., et al., “Flowvisor: A network virtualization layer,” OpenFlow Switch Consortium,

Tech. Rep, 2009.
[39] RouteFlow, http://cpqd.github.io/RouteFlow/. [accessed: 27/08/2014]. Article(CrossRef Link)
[40] ONOS, http://tools.onlab.us/onos.html. [accessed: 27/08/2014]. Article(CrossRef Link)
[41] Salvadori, E., et al., “Generalizing virtual network topologies in OpenFlow-based networks,” in

Proc. of Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, 2011.
Article (CrossRef Link)

[42] Tsai, P.-W., et al., “Supporting Extensions of VLAN-tagged Traffic across OpenFlow Networks,”
in Proc. of Research and Educational Experiment Workshop (GREE), 2013 Second GENI, IEEE,
2013. Article(CrossRef Link)

[43] Matias, J., et al., “Implementing Layer 2 Network Virtualization using OpenFlow: Challenges and
Solutions,” in Proc. of Software Defined Networking (EWSDN), 2012 European Workshop on,
IEEE, 2012. Article(CrossRef Link)

[44] Das, S., G. Parulkar, and N. McKeown, “Unifying packet and circuit switched networks,” in Proc.
of GLOBECOM Workshops, 2009 IEEE, IEEE, 2009. Article (CrossRef Link)

[45] Gutz, S., et al., “Splendid isolation: A slice abstraction for software-defined networks,” in Proc. of
the first workshop on Hot topics in software defined networks, ACM, 2012.
Article (CrossRef Link)

[46] Chen, Y., et al., “VNMC for network virtualization in OpenFlow network,” in Proc. of Cloud
Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on, IEEE,
2012. Article (CrossRef Link)

[47] Azodolmolky, S., et al., “Optical FlowVisor: an OpenFlow-based optical network virtualization
approach,” in Proc. of National Fiber Optic Engineers Conference, Optical Society of America,
2012.
Article (CrossRef Link)

[48] Doriguzzi Corin, R., et al., “VeRTIGO: network virtualization and beyond,” in Proc. of Software
Defined Networking (EWSDN), 2012 European Workshop on, IEEE, 2012. Article(CrossRef Link)

[49] Salvadori, E., et al., “Demonstrating generalized virtual topologies in an openflow network,” in
Proc. of ACM SIGCOMM Computer Communication Review, ACM, 2011.
Article (CrossRef Link)

[50] Giatsios, D., et al., “Integrating FlowVisor Access Control in a Publicly Available OpenFlow
Testbed with Slicing Support,” in Proc. of Testbeds and Research Infrastructure. Development of
Networks and Communities, Springer. p. 387-389, 2012. Article (CrossRef Link)

[51] Matias, J., et al., “An OpenFlow based network virtualization framework for the cloud,” in Proc.
of Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, IEEE, 2011. Article(CrossRef Link)

http://dx.doi.org/10.1145/1384609.1384625
http://www.noxrepo.org./
http://dx.doi.org/10.1145/2491185.2491189
http://www.projectfloodlight.org/floodlight/
https://www.semanticscholar.org/paper/Maestro-a-System-for-Scalable-Openflow-Control-Cai-Cox/6a6c794083cbdf79de0fcd2065699477290b5546/pdf
http://trema.github.io/trema/
http://www.opendaylight.org/
http://osrg.github.io/ryu/
http://cpqd.github.io/RouteFlow/
http://tools.onlab.us/onos.html
http://dx.doi.org/10.1109/glocom.2011.6134525
http://eprints.lancs.ac.uk/70555/1/P.Georgopoulos_ICCCN2014.pdf
http://ieeexplore.ieee.org/document/6385044/?arnumber=6385044
http://dx.doi.org/10.1109/GLOCOMW.2009.5360777
http://dx.doi.org/10.1145/2342441.2342458
http://ieeexplore.ieee.org/document/6664285/?arnumber=6664285
http://dx.doi.org/10.1364/nfoec.2012.jth2a.41
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.278&rep=rep1&type=pdf
http://dx.doi.org/10.1145/2018436.2018520
http://dx.doi.org/10.1007/978-3-642-35576-9_38
http://dx.doi.org/10.1109/CloudCom.2011.104

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4930

[52] Yin, X., et al., “Software defined virtualization platform based on double-FlowVisors in multiple
domain networks,” in Proc. of Communications and Networking in China (CHINACOM), 2013
8th International ICST Conference on, IEEE, 2013. Article(CrossRef Link)

[53] Das, S., et al, “MPLS with a simple OPEN control plane,” in Proc. of Optical Fiber
Communication Conference, Optical Society of America, 2011. Article (CrossRef Link)

[54] Sharafat, A.R., et al., “Mpls-te and mpls vpns with openflow,” in Proc. of ACM SIGCOMM
Computer Communication Review, ACM, 2011. Article (CrossRef Link)

[55] Salmito, T., et al., “FIBRE-An International Testbed for Future Internet Experimentation,” Anais
do 32º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos-SBRC 2014, 2014.
Article(CrossRef Link)

[56] Moraes, I.M., et al., “FITS: A Flexible Virtual Network Testbed Architecture,” Computer
Networks, 2014. Article (CrossRef Link)

[57] Su-é, M., et al., “Design and implementation of the OFELIA FP7 facility: The European
OpenFlow testbed,” Computer Networks, 2013.Article(CrossRef Link)

[58] Hu, J.-W., C.-S. Yang, and T.-L. Liu, “Design and implementation of an efficient and
programmable future internet testbed in Taiwan,” Computer Science and Information Systems,
10(2): p. 825-842, 2013. Article (CrossRef Link)

[59] Min, S.H., B.C. Kim, and J.Y. Lee, “NetFPGA-based scheduler implementation for resource
virtualization of Future Internet testbed,” in Proc. of ICT Convergence (ICTC), 2011 International
Conference on, IEEE, 2011. Article(CrossRef Link)

[60] Riggio, R., T. Rasheed, and F. Granelli, “Empower: A testbed for network function virtualization
research and experimentation,” in Proc. of Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, IEEE, 2013. Article(CrossRef Link)

[61] Roy, A.R., et al., “Design and Management of DOT: A Distributed OpenFlow Testbed,” in Proc.
of 14th IEEE/IFIP Network Operations and Management Symposium (NOMS 2014)(To appear),
2014. Article (CrossRef Link)

[62] Berman, M., et al., “GENI: A federated testbed for innovative network experiments,” Computer
Networks, 2014. Article (CrossRef Link)

[63] Thanh, N.H., et al., “ECODANE: A customizable hybrid testbed for green data center networks,”
in Proc. of Advanced Technologies for Communications (ATC), 2013 International Conference on,
IEEE, 2013. Article(CrossRef Link)

[64] Kanaumi, Y., “Large-scale OpenFlow testbed in Japan,” in Proc. of The 31st APAN Meeting, 2011.
Article (CrossRef Link)

[65] Georgopoulos, P., et al., “Cache as a service: Leveraging sdn to efficiently and transparently
support video-on-demand on the last mile,” in Proc. of Computer Communication and Networks
(ICCCN), 2014 23rd International Conference on, IEEE, 2014. Article (CrossRef Link)

[66] Tai, D.Y. and F.Y. Xu., “Cloud manufacturing based on cooperative concept of SDN,” in Proc. of
Advanced Materials Research, Trans Tech Publ, 2012. Article(CrossRef Link)

[67] Berryman, A., et al., “Advanced manufacturing use cases and early results in GENI
infrastructure,” in Proc. of Research and Educational Experiment Workshop (GREE), 2013
Second GENI, IEEE, 2013. Article(CrossRef Link)

[68] Al-Shabibi, A., et al., “OpenVirteX: Make your virtual SDNs programmable,” in Proc. of the third
workshop on Hot topics in software defined networking, ACM, 2014. Article (CrossRef Link)

[69] Drutskoy, D.A., “Software-Defined Network Virtualization with FlowN,” Master's Thesis,
Princeton University, 2012. Article(CrossRef Link)

[70] Blenk, A., A. Basta, and W. Kellerer, “HyperFlex: An SDN virtualization architecture with
flexible hypervisor function allocation,” in Proc. of Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, IEEE, 2015. Article (CrossRef Link)

[71] Liao, L., V. Leung, and P. Nasiopoulos, “DFVisor: Scalable network virtualization for QoS
management in cloud computing,” in Proc. of Network and Service Management (CNSM), 2014
10th International Conference on, IEEE, 2014. Article(CrossRef Link)

[72] Bozakov, Z. and P. Papadimitriou, “Autoslice: automated and scalable slicing for software-defined
networks,” in Proc. of the 2012 ACM conference on CoNEXT student workshop, ACM, 2012.

http://dx.doi.org/10.1364/ofc.2011.owp2
http://dx.doi.org/10.1145/2018436.2018516
https://hal.archives-ouvertes.fr/hal-00990392/document
http://dx.doi.org/10.1016/j.bjp.2014.01.002
https://www.semanticscholar.org/paper/Design-and-implementation-of-the-OFELIA-FP7-Su%C3%B1%C3%A9-Bergesio/664e9e0f9db3a2736a7ce28fe3c80eed9babc9ed/pdf
http://dx.doi.org/10.2298/CSIS121114036H
http://ieeexplore.ieee.org/document/6082692/?arnumber=6082692
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6702538
http://dx.doi.org/10.1109/NOMS.2014.6838241
http://dx.doi.org/10.1016/j.bjp.2013.12.037
http://s3.amazonaws.com/academia.edu.documents/32627156/Paper_1.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1472030310&Signature=tUuxFAFrqFsye9dWOQUUSfmCEaU%3D&response-content-disposition=inline%3B%20filename%3DECODANE_A_Customizable_Hybrid_Testbed_fo.pdf
http://ns.lk.apan.net/meetings/HongKong2011/Session/Slides/fit/7.pdf
http://eprints.lancs.ac.uk/70555/1/P.Georgopoulos_ICCCN2014.pdf
http://www.scientific.net/AMR.482-484.2424
http://arxiv.org/pdf/1409.0079.pdf
http://dx.doi.org/10.1145/2620728.2620741
http://arxiv.org/pdf/1409.0079.pdf
http://arxiv.org/pdf/1409.0079.pdf
http://arxiv.org/pdf/1409.0079.pdf

4931 Ahmed et al.: Survey on Network Virtualization Using OpenFlow: Taxonomy, Opportunities and Open Issues

Article (CrossRef Link)
[73] Yan, Z., P. Zhang, and A.V. Vasilakos, “A security and trust framework for virtualized networks

and software‐defined networking,” Security and Communication Networks, 2015.
Article(CrossRef Link)

[74] Psounis, K., “Active networks: Applications, security, safety, and architectures,” Communications
Surveys & Tutorials, IEEE, 2(1): p. 2-16, 1999. Article (CrossRef Link)

[75] Yang, M., et al., “Software-Defined and virtualized future mobile and wireless networks: A
Survey,” Mobile Networks and Applications, p. 1-15, 2014. Article (CrossRef Link)

[76] Victor T. Costa, “L.ı.H.M.K.C.,” Vulnerability Study of FlowVisor-based Virtualized Network
Environments, 2013. Article(CrossRef Link)

[77] Heller, B., R. Sherwood, and N. McKeown, “The controller placement problem,” in Proc. of the
first workshop on Hot topics in software defined network, ACM, 2012. Article (CrossRef Link)

[78] Jaiganesh, M. and V.A. Kumar, “SOV2C2: Secure Orthogonal View of Virtualization in Cloud
Computing,” SmartCR, 2(4): p. 278-285, 2012. Article (CrossRef Link)

[79] Wen, H., P.K. Tiwary, and T. Le-Ngoc, “Network Virtualization Technologies and Techniques,”
Wireless Virtualization, Springer. p. 25-40, 2013. Article(CrossRef Link)

[80] Sookhak, M., et al., “Towards Dynamic Remote Data Auditing in Computational Clouds,” The
Scientific World Journal, 2014. Article (CrossRef Link)

[81] Dabkiewicz, S., R. van der Pol, and G. van Malenstein, OpenFlow network virtualization with
FlowVisor, 2012.Article(CrossRef Link)

[82] Sookhak, M., et al., “A review on remote data auditing in single cloud server: Taxonomy and open
issues,” Journal of Network and Computer Applications, 43: p. 121-141, 2014.
Article (CrossRef Link)

[83] Giotis, K., et al., “Combining OpenFlow and sFlow for an effective and scalable anomaly
detection and mitigation mechanism on SDN environments,” Computer Networks, 62: p. 122-136,
2014. Article (CrossRef Link)

[84] Harlan, R.C., Network management with Nagios. Linux Journal, (111): p. 3, 2013.
Article(CrossRef Link)

Ahmed Abdelaziz received the M.IT. in University of Malaya in 2007. He is
currently a Ph.D. candidate at the Department of Compute Systems and Technology,
University of Malaya, Kuala Lumpur, Malaysia. His research interests include SDN,
NFV, Load Balance in the Cloud and Network virtualization.

Tan Fong Ang did his Masters in computer science from University of Malaya in
2001. He obtained his Ph.D. from University of Malaya in year 2011. His research area
includes resource allocation, Cloud Computing, Software Defined Network, and
network security.

http://dx.doi.org/10.1145/2413247.2413251
http://arxiv.org/pdf/1409.0079.pdf
http://dx.doi.org/10.1109/COMST.1999.5340509
http://arxiv.org/pdf/1409.0079.pdf
http://arxiv.org/pdf/1409.0079.pdf
http://dx.doi.org/10.1145/2342441.2342444
http://dx.doi.org/10.6029/smartcr.2012.04.004
http://download.springer.com/static/pdf/800/bok%253A978-3-319-01291-9.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-01291-9&token2=exp=1472026363%7Eacl=%2Fstatic%2Fpdf%2F800%2Fbok%25253A978-3-319-01291-9.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-01291-9*%7Ehmac=9720f519caf0084efa334c67341602bcce130295c94ed859c149b8fe69a29fd8
http://downloads.hindawi.com/journals/tswj/2014/269357.pdf
http://dare.uva.nl/cgi/arno/show.cgi?fid=496613
http://dx.doi.org/10.1016/j.jnca.2014.04.011
http://dx.doi.org/10.1016/j.bjp.2013.10.014
http://dl.acm.org/citation.cfm?id=860378

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4932

Mehdi Sookhak is a postdoctoral fellow at Carleton University of Canada funded by
Canadian Natural Sciences and Engineering Research Council (NSERC). His areas of
interest include Cryptography and Information Security, Mobile Cloud Computing,
Computation outsourcing, Access control, Wireless Sensor & Mobile Ad Hoc Network
(Architectures, Protocols, Security, and Algorithms), and Distributed Systems

Suleman Khan is currently a PhD student under Bright Spark Scholarship, University
of Malaya, Malaysia, since October 2013. He has published more than 20 research peer
review articles in different journals and international conferences while having research
interest in, Software defined networks, Network Virtualization, Network Forensics,
Internet of Things, Big Data, and Cloud computing security.

Athanasios V. Vasilakos is currently a Professor with the University of Western
Macedonia, Greece. He has authored or coauthored over 200 technical papers in major
international journals and conferences, five books, and 20 book chapters. He served as a
General Chair, a Technical Program Committee Chair for many international
conferences. He served or is serving as an Editor of the IEEE renowned transactions
and, also a General Chair of the Council of Computing of the European Alliances for
Innovation.

Chee Sun Liew completed his Masters of Science (Computer Science), in Distributed
Computing and Networks from University Sains Malaysia in 2002. He holds a Ph.D. in
Informatics from the University of Edinburgh, under Malaysia Ministry of Higher
Education scholarship program. His Ph.D. research was related to workflow
optimization, under the supervision of Prof Malcolm Atkinson

Adnan Akhunzada is currently a Ph.D. Fellow and an Active Researcher with the
Center for Mobile Cloud Computing, University of Malaya, Malaysia. He had a great
experience teaching international modules. He is a Senior Lecturer with CIIT,
Islamabad, since 2011. He is author/coauthor in several high-impact major journal
publications, conferences, and a book chapter.

	Abstract
	1. Introduction
	2. OpenFlow Components
	2.1 OpenFlow switches
	2.2 OpenFlow channel
	2.3 OpenFlow controller

	3. Network Virtualization Layer
	4. OpenFlow Network Virtualization
	4.1 Proxy virtualization
	4.2 Layer 2 virtualization
	4.3 Programming virtualization

	5. Testbeds Based on OpenFlow NV
	5.1 FIBRE
	5.2 FITS
	5.3 OFELIA
	5.4 TWAREN
	5.5 FiRST@PC
	5.6 NITOS
	5.7 EmPOWER
	5.8 DOT
	5.9 GENI
	5.10 ECODANE
	5.11 JGN-X
	5.12 Case Studies

	6. OpenFlow advantages
	6.1 OpenVirteX
	6.2 FlowN
	6.3 HyperFlex
	6.4 DFVisor
	6.5 Autoslice

	7. Challenges and Future Research Directions
	7.1 Security challenges in OpenFlow network virtualization
	7.1.1 Guest controller security issues
	7.1.2 FlowVisor security issues
	7.1.3 Switch security issues
	7.2 Future directions and Open issues in OpenFlow network virtualization
	7.2.1 Scalability and reliability
	1.1.1 Isolation
	1.1.2 Monitoring
	1.1.3 Handling of switch events

	8. Conclusion

