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Abstract 
 

In this work, we consider the optimization problem of minimizing energy consumption for 
real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual 
subgradient algorithm was used for finding a solution to the optimization problem. However, 
the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration 
parameters; ii) need for saving previous iteration results for computing the optimization results 
at the current iteration. To overcome these drawbacks, using a joint network coding and 
scheduling optimization framework, we propose a novel distributed primal-dual Random 
Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, 
we derive the corresponding recursive formulas for the proposed RDS algorithm, which are 
useful for practical applications. In comparison with the traditional subgradient algorithms, the 
illustrated performance results show that the proposed RDS algorithm can achieve an 
improved optimal solution. Moreover, the proposed algorithm is stable and robust against the 
choice of parameter values used in the algorithm. 
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1. Introduction 

The development of broadband wireless networks has led to the emergence of mobile 
commerce applications. Many mobile commerce applications require or can benefit from 
real-time multicast support in wireless networks [1]. As an example, the general aspects and 
principles for interfaces supporting Multimedia Broadcast Multicast Services (MBMS) is 
being specified in 3GPP LTE project [2]. The MBMS in 3GPP provides the possibility of 
distributed real-time multimedia services for mobile users via IP multicast data over 
point-to-multipoint radio bearers. Furthermore, emerging Tactile Internet services will be an 
important feature for the future wireless networks, which have very low latency requirements, 
e.g. 1ms round-trip time [3]. Energy-efficiency becomes an important requirement for 
supporting real-time wireless multicast. Hence, in this work, we focus on the aspect of 
minimum energy consumption for multicast transmission in multi-hop wireless networks by 
using joint network coding (NC) [4] and scheduling techniques. 

In the last few years, NC has enabled new ways to significantly improve network 
performance such as throughput, robustness, and efficiency. Moreover, it was found that the 
multicast capacity can be achieved via random network coding (RNC) in multi-hop networks 
[5]. This result has led to a great progress of RNC-based distributed optimization algorithms 
for wireless networks. For example, Lun et al. decomposed the minimum cost multicast 
optimization problem into two sub-problems [6]. In the solution approach of [6], the authors 
first found an NC subgraph with minimum cost by solving a linear or a convex programming 
problem using a distributed primal-dual subgradient optimization algorithm. Next, the authors 
designed an NC scheme for the optimal subgraph, which can be solved by a simple RNC 
procedure. Similarly, Wu et al. proposed a distributed NC optimization algorithm for mobile 
ad-hoc networks to achieve a minimum-cost multicast [7].  

Another approach for solving this optimization problem is to integrate the medium access 
control (MAC) techniques into the optimization framework. Compared with the techniques 
which use simple orthogonal interference-free channel models, the network performance can 
be improved significantly by using some optimized scheduling strategies in the MAC layer 
[6][8]. Recently, using an interference graph model, Jaramillo et al. studied the optimization 
problem about the equitable distribution and scheduling of resources when real-time and 
non-real-time services coexist in wireless multi-hop networks [9]. In addition, the same 
authors also studied the optimal rate allocation problem under heterogeneous delay constraints 
[10]. For non-real-time services, Xiong et al. proposed an efficient scheduling scheme for 
minimizing the energy consumption in ad-hoc wireless sensor networks with the objective of 
maximizing the network lifetime [11]. Although these studies consider the resource allocation 
and scheduling optimization problem in real-time and/or non-real-time scenarios, they do not 
integrate NC into the optimization framework.  

In order to achieve the best performance in wireless multi-hop networks, we should 
integrate the two optimization problems discussed previously. By considering this aspect, 
Rajawat et al. improved the throughput performance of the wireless multicast system under 
strict delay constraints by joint NC and scheduling optimization [12]. Using hyperarcs to 
model the natural multicast properties of wireless transmissions, researchers proposed to 
construct a conflict graph model to identify effective network configuration for jointly 
optimizing scheduling and NC subgraph [13][14][15]. In fact, this conflict graph model can be 
used to build a protocol interference model of the nodes in wireless networks. To avoid the 
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interference, we can select the scheduling strategy by sampling stable sets in a conflict graph. 
This indicates that the feasible set of the network configuration can be modeled as a stable set 
in a conflict graph. Previous research studies have shown that, comparing with the traditional 
scheduling strategies using simple interference models, the performance of wireless networks 
can be improved significantly by jointly optimizing NC subgraph and scheduling using 
protocol interference models [13], or using more accurate physical interference models [16]. 

Since real-time streaming multicast services usually require the network to support a fixed 
data rate, the framework to optimize the overall network throughput performance proposed in 
[13] is not applicable. Lun [6] and Wu [7] et al. proposed a NC subgraph based optimization 
framework with minimum cost for supporting multicast scenarios with fixed data rates. 
However, there is no scheduling strategy integrated into their optimization framework. In 
addition, the conflict graph based scheduling optimization problem built in [13] is an NP-hard 
problem. Therefore, the authors proposed a greedy algorithm by sampling maximum weight 
stable sets to solve the optimization problem [13]. However, a major drawback of this 
algorithm is that it is very sensitive to the iteration parameters such as the step size. In other 
words, the results often fall far short of the global optimum value in case that the iteration 
parameters are not chosen properly. Since those iteration parameters can only be chosen 
through trial and error methods, it is thus difficult to meet real-time requirements. To address 
this issue, recently, we proposed a joint optimization algorithm by sampling K number of 
random maximal stable sets (K-RMSS) in a conflict graph [14]. Furthermore, it has come to 
our attention that Mohandespour et al. have also observed in an independent study that the 
near-optimal results can be achieved efficiently by randomly sampling subsets of MSSs [15], 
which is in principle similar to our proposed K-RMSS scheme in [14]. These independent 
studies have shown that the proposed K-RMSS scheme has a better performance in terms of 
convergence and accuracy than the existing algorithms in the literature. 

The traditional sub-gradient based primal-dual algorithms, such as the K-RMSS proposed 
in [14] or the equivalent algorithm with randomly sampling subsets of MSSs proposed in [15], 
still have two major drawbacks. The first one is that it is quite sensitive to the iteration 
parameters during the primary recovery procedure. The second drawback is that we have to 
compute and store all of the previous iterative results during each primary recovery procedure, 
which is not suitable for the real-time implementation. Due to these drawbacks, to achieve a 
predefined target accuracy requirement, the iteration parameters have to be chosen carefully in 
advance through trial and error methods. However, Sherali et al. showed that the accuracy can 
be controlled up to some extent through random-deflected-subgradient (RDS) based 
primal-dual recovery algorithms [17]. Inspired by the findings in [17], our main contributions 
in this work can be summarized as: 

1. A RDS based primal-dual algorithm is proposed to solve the optimization problem by 
joint NC and multicast scheduling. The proposed algorithmic solution is much more robust 
against the choice of iteration parameters than the traditional sub-gradient based primal-dual 
algorithms, such as the K-RMSS etc. Moreover, the proposed algorithm can achieve better 
optimization results; 

2. For the proposed RDS algorithm, we derived the corresponding recursive formulas, 
which can be useful for an online implementation of the proposed algorithm.  

The rest of the paper is organized as follows. In Section I, we introduce the network model 
adopted in this work. We present the construction of the minimum energy real-time multicast 
optimization framework using a conflict graph in Section II. In Section III, we propose a 
distributed RDS based optimization algorithm using Lagrangian decomposition. Illustrative 
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examples highlighting the benefits of the proposed RDS based algorithm are presented in 
Section IV. Finally, conclusions of this work are provided in Section V. 

2. Network Model 

We use a directed hypergraph H=(N, A) to model a wireless multi-hop network, where N, 
and A denote the set of nodes and a collection of hyperarcs, respectively. We define (i, J)∈
A as a hyperarc and N(i)⊂  N, as a set of neighbors of node i within the receiving range. In 
other words, when the node i sends a data packet, it is assumed that all the nodes in N(i)⊂  N, 
can receive this packet. Clearly, for any hyperarc (i, J)∈A, there are i∈N, and J⊂ N(i). For 
each node, there are at most 12 )( −iN  hyperarcs. 

Throughout the paper, we assume half-duplex transceivers and consider wireless networks 
operating with slotted time. In any time slot, a node can either broadcast one constant-length 
packet or stay idle. The scheduling issue considered here is to schedule all of the hyperarcs 
defined above. When scheduling multiple hyperarcs to transmit packets simultaneously, we 
must avoid the interference among them. The conflict situations among specific hyperarcs 
depend on the network interference model. We consider the following two commonly used 
protocol interference models: the primary interference model and the secondary interference 
model. In the primary interference model, it is assumed that each node can only receive data 
from one node every time. Whereas, in the secondary interference model, besides the 
previously mentioned constraints, it is also assumed that any receiving node can only receive 
data correctly when all other neighbors are in a dormant state. The two interference models are 
defined as follows: 

Interference Models: when scheduling any two hyperarcs (i1, J1) and (i2, J2) 
simultaneously, the necessary and sufficient conditions for conflict-free transmission between 
them are: 

(1) i1≠i2 and i1∉J2,i2∉J1; 
(2) J1∩J2=Φ in the primary interference model; and J1∩N(i2)=Φ and J2∩N(i1)=Φ in the 

secondary interference model, where Φ denotes an empty set. 
Note that for both the primary interference model and the secondary interference model, 

the definitions are symmetric. Therefore, we can use an undirected graph to represent the 
conflict between any pair of hyperarcs. In this paper, we use the method proposed in [13] to 
construct the conflict graph, which is defined below: 

Conflict graph G: for any hypergraph H defined above, we can construct an undirected 
graph G = (T,B) according to an interference model, where G represents conflicts among 
overall hyperarcs. Where, the vertex set T in G is the collection of all of the hyperarcs in H. 
Each edge in B represents the conflict between two adjacent vertices according to the 
interference model, which indicates that these two corresponding hyperarcs cannot be 
scheduled simultaneously due to conflict.  

Using the definitions of the interference models and the conflict graph described above, 
given any hypergraph H, we can easily construct its conflict graph G. Given a conflict graph 
G, we now define a stable set S as any subset in which there is no edge connected between any 
two nodes. Any stable set S can be indicated by a column vector of length |T |, which is defined 
as 
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A maximal stable set is the one that is not contained in any other stable set. A maximum 
stable set is a stable set of largest cardinality. The stability number of G is the cardinality of the 
maximum stable set. The stable set polytope denoted by CHSS is the convex hull of the 
incidence vectors of all stable sets of G.  

3. Optimization Framework 
In this paper, we adopt the same optimization framework introduced in [14], which minimizes 
the energy requirement for real-time wireless multicast via joint optimization of NC and 
scheduling. To present this framework, we provide definitions of some essential variables in 
Table 1. 

Table 1. Symbol definitions 
Symbols Definitions 

iJz  denotes the rate of NC data packet injected to hyperarc (i, J) by node i. 

Z denotes a collection representing the coded packet rate injected to overall hyperarcs, i.e. 
( , )( )iJ i JZ z ∈=  , which is also known as an NC subgraph. 

T represents the collection of all sink nodes in a multicast session. 
( )t
iJjx  is the transmission rate of the information flow transferred to the terminal t T∈  when 

transmitting from i∈  to ( )j N i∈  in case that the coded packet rate injected to the 

hyperarc ( ),i J ∈A is iJz . 
( )t
ijx  is the transmission rate of the information flow transferred to the sink node t T∈  when 

transmitting from i∈ to ( )j N i∈ , which is calculated by 
( ) ( )

( )

t t
ij iJj

J N i
x x

⊂

= ∑ . 

ijd  denotes the distance between node i and node j. 

iJζ  represents the energy required when the coded packet transferred with the rate iJz  over the 

hyperarc ( ),i J ∈A, which is computed by 2maxiJ ijj J
dζ

∈
=  as in [14]. 

 
For simplifying the optimization framework for supporting real-time multicast services 

requiring higher reliability, we assume that the physical layer can ensure perfect reliable 
transmissions. This can be achieved for example through appropriate power control, channel 
coding, modulation and other methods when the coded packet rate on any hyperarc is not more 
than iJZ .  

We consider the optimization problem of minimizing the energy consumption of real-time 
multicast. The objective function for this optimization problem can be expressed as a function 
of the coded packet rate iJZ , similar to [6], this is defined as 
 

( )iJ iJ iJ iJf z zz=    (2) 

 
For real-time multicast services requiring different reliabilities, we can modify the 

objective function in (2) by introducing some factors for describing transmission costs under 
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different link qualities. However, this general case is beyond the scope of the present 
contribution and left for future studies. Using the definitions in Table 1, as in [14], we can 
model the optimization problem of minimizing the energy consumption of transmissions with 
a fixed multicast rate as a joint scheduling and NC subgraph optimization problem, i.e. 
 

minimize ( , )
( )iJ iJi J

f z
∈∑     (3) 

s.t. 
    Capacity constraints:  

( )

{ , ( )}
, , ( ),t

ij iJ
J j J J N i

x z i j N i t T
∈ ⊂

≤ ∀ ∈ ∈ ∈∑   

    Flow constraints FC : 

( ) ( )

( ) { ( )}

,
,

0,

t t
ij ji

j N i j i N j

R i s
x x R i t

else∈ ∈

=
− = − =



∑ ∑ ,i t T∀ ∈ ∈  

( ) 0, , ( ),t
ijx i j N i t T≥ ∀ ∈ ∈ ∈  

    Scheduling constraints:              
SS( ) CHiJ iZ z ∈= ∈C  

 
Note that the objective function in this framework is a convex function and CHSS is a 

convex set. Therefore, the optimization problem is a convex optimization problem. 
Theoretical studies have shown that the optimal NC subgraph can be obtained by solving the 
above described optimization problem. Then, the multicast transmission can meet all the 
constraints through RNC [5][6].  

Since the optimization in the whole stable set polytope of CHSS, i.e. the scheduling 
sub-problem in (3), has been proved to be a NP-hard problem [13], there is no effective 
method to solve it even using centralized algorithms. Accordingly, we recently proposed to 
construct a distributed subgradient algorithm, i.e. K-RMSS, to solve this problem in [14]. As 
mentioned in the introduction part of this paper, the non-robustness and low efficiency of 
K-RMSS will severely limit its application in practical systems. To overcome its two major 
drawbacks, we thus propose a novel RDS based primal-dual algorithm to solve (3) in the 
following section. 

4. Primal-dual RDS Algorithm 

First, let ( ))(t
ijλλ = denote the Lagrangian multipliers. Using the Lagrangian relaxation, we can 

construct a dual function of the objective function of the original problem by moving the 
capacity constraint into the objective function in (3), i.e. 
 

)λ,,(min)λ(
SSF CH,C

ZXq
ZX

L
∈∈

=
 

  
(4) 

where )( )(t
ijxX = , CF is the flow constraint defined in (3), and )λ,,( ZXL denotes the 

corresponding Lagrangian function related to the multiplier λ. Finally, the dual objective 
function can be decomposed into two parts as follows,  
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Note that the two parts in Eq.(5) are coupled with the Lagrangian multiplier ( )t
ijλ . 

Substituting (5) into (4), we can decompose this dual problem into two sub-problems, i.e. 
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Then, the dual problem of the original problem in Eq. (3) can be formulated as 
 

maximize ,
( ) min ( , , )

X Z
q X Zλ λ=     

(7) 
s.t. 

0λ ≥  
To solve this dual problem, we use the projected subgradient algorithm with the iterative 

rule as follows,  
 

( )( ),0][][][λmax1][λ ndnδnn +=+    
(8) 

where ][nδ  denotes a suitable step size and d[n] denotes the deflected subgradient in the n-th 
iteration.  

Remark 1: for the traditional subgradient algorithms considered in [6][7][14], the authors 
proposed to utilize the current subgradient for updating the multiplier λ[n] during the n-th 
iteration. Different from the traditional subgradient algorithms, the key idea of the deflected 
subgradient algorithm is to improve the robustness and accuracy by making use of the 
subgradient information of the previous iterations in an efficient way. We will explain these 
differences between the subgradient algorithms in more detail. 

To explain our proposed RDS algorithm, let ( )][][ )( ngng t
ij=  denote the original 

subgradient in the n-th iteration and set d[1]=g[1]. As proposed in [17], in case of n≥2, the 
deflected subgradient d[n] will be updated using: 

 
]1[]1[][ −⋅+−= ndngnd ϕ    

(9) 
where ϕ  ( 10 << ϕ ) is a predefined deflected coefficient. It can be chosen randomly at the 

beginning and then kept constant during all of the remaining iterations [17]. Additionally, the 
original subgradient g[n] is computed using:  
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∑−=
⊂∈ })(,{

)()( ][ˆ][ˆ][
iNJJjJ

iJ
t

ij
t

ij nznxng
   

(10) 

where ][ˆ )( nx t
ij , ][ˆ nziJ  denote the optimization results of the sub-problem 1 and sub-problem 2 

in the n-th iteration of the algorithm for solving (7), respectively.  
As suggested in [17], to control the accuracy of the algorithm, the step size ][nδ  can be 

updated as a function of the deflection subgradient d[n] using 

2][
][

nd
n εd =     

(11) 

where ε ( 10 << ε ) denotes the accuracy control parameter and ][nd  denotes the Euclidean 
norm of d[n]. Using the iterative rule in (11) proposed for solving (7), Sherali and Choi [17] 
have proven that the gap between the global optimization results and the q(λ) is not more than 
ε. That is, the solution for this dual problem can be viewed as an ε-optimal solution. 

Remark 2: first, by observing (9), we can note that the deflected subgradient d[n] in any 
given iteration actually includes all of the subgradient information of the previous iterations 
using a filtering operation. However, the traditional subgradient algorithms only utilize the 
current subgradient g[n] instead of d[n] when applying the similar iterative rule as in Eq. (8). 
Secondly, the step size ][nδ adopted in the traditional subgradient algorithms (e.g 

][nδ =α/(β+n), where α>0, β≥0 as used in [6][7][13][14]) does not consider the effect of the 
subgradient during each iteration. However, the step size δ[n] adopted here as in Eq. (11) 
considers the effect of the subgradient during each iteration. Therefore, due to these two main 
differences, it is expected that the proposed deflected subgradient algorithms can achieve a 
better performance than the traditional subgradient algorithms.  

Furthermore, as shown in (10), the calculation of each subgradient ][)( ng t
ij  is only related to 

local variables ][ˆ nx(t)
ij and ][ˆ nziJ . It indicates that all the computations can be carried out in a 

single-hop range of the node i. Therefore, any node-based distributed algorithm can be 
employed without collecting the information of the entire network. In other words, we can 
calculate the iteration values for Lagrangian multiplier λij

(t) using (8) and (10) in a distributed 
manner, where each node only needs to communicate with nodes which are in a one-hop 
distance rather than all the nodes in the network. 

Since the intermediate results ][ˆ nx(t)
ij  and ][ˆ nziJ  obtained by solving the dual sub-problems 

cannot guarantee the optimal result of the primary problem, we need to use the well-known 
primary recovery techniques to make the results converge to the optimal value [12]. To 
simplify the description, the optimal results about the information flow (i.e. ][ˆ )( nx t

ij  ) and NC 

subgraph (i.e. ][ˆ nziJ ) in the n-th iteration are defined as follows, respectively: 

])[ˆ(][ˆ
])[ˆ(][ˆ )(

nznZ

nxnX

iJ

t
ij

=

=  
 

(12) 

The core idea of the primary recovery technique is to compute a convex combination of all 
the previous results as the current optimal solution of the primary problem. That is, by 
evaluating a convex combination of all the previous results, the optimal solution of the 
primary problem in the n-th iteration can be obtained by using the following formulas [18]: 
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When adopting the RDS based algorithm, it is interesting to note that the formulas in (13) 
can be replaced by the following two simple recursive equations:  
 Recursive primary recovery formulas: during the n-th iterative primary recovery 

procedure, the optimal solution of the information flow and the NC subgraph can be obtained 
by the following two simple recursive formulas: 

( ) ][ˆ
1
1]1[

1
1][ *
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* nXnXnX nn

n
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(14) 

A detailed derivation of the recursive primary recovery formulas can be found in the 
Appendix at the end of the paper. After obtaining ][* nZ , the final optimization results of the 
primary problem at the n-th iteration can be computed using 

∑ ∈
==

A),(
*** ])[(])[(][

Ji iJiJ nzfnZfnf  (15) 

Now let Nmax denote the maximum allowed number of iterations, ε denote a predefined 
accuracy requirement (where 0< ε <1), and φ denote a randomly chosen deflected coefficient 
(0<φ<1). As a result, the proposed primal-dual RDS optimization algorithm for solving (3) can 
be summarized as in Table 2. 

Table 2. The proposed primal-dual RDS algorithm 
Input: G, T, K, ε, φ, Nmax 
Initialization: set 0<λ<1 randomly, n=1 
While n ≤ Nmax 

Step 1: solve the sub-problem 1 in (6), then obtain ][ˆ nX ; 

Step 2: randomly sample K maximal stable sets in G, denote the sets by Ωk; 
Step 3: solve the sub-problem 2 in (6) based on Ωk, then obtain ][Ζ̂ n ; 

Step 4: compute X*[n] and Z*[n] according to (14); 
Step 5: calculate the optimal results f*[n] of the primary problem using (15); 
Step 6: if f*[n] satisfies the stopping criterion, then break; otherwise, proceed to Step 7; 
Step 7: compute the current subgradient g[n] using (10); 
Step 8: compute the current d[n] using (9); 
Step 9: calculate λ[n+1] using (8), sets n=n+1 and return to Step 1. 

End while 
Output: f*[n]  

The stopping criterion of the algorithm can be designed based on the difference between 
the optimal results of the primary problem in two successive iterations. For example, the 
stopping criterion can be designed as ε≤−− ]1[][ ** nfnf .  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   4873 

Regarding the solution of the sub-problem 1 in (6), we can model it as the classical shortest 
path problem, which can be solved through a traditional asynchronous distributed 
Bellman-Ford algorithm [19]. Whereas, for the sub-problem 2 in (6), we can model it as a 
simple linear programming problem and a solution can be obtained by randomly sampling K 
maximal stable sets, as proposed in Section 4.2 of [14]. We would like to point out an 
important aspect of the present contribution is that the proposed primal-dual RDS algorithm is 
independent of the solutions of both the sub-problem 1 and the sub-problem 2. That is, any 
solution to the sub-problem 1 and/or the sub-problem 2 can easily be integrated into the 
proposed algorithm for improving the optimization performance. In this paper, we only adopt 
the proposed solution to the sub-problem 2 in [14] as an example for the illustrations.  

Remark 3: Firstly, as mentioned previously, the calculation of both equations (8) and (10) 
can be implemented in a fully distributed manner. And the solutions to both the sub-problem 1 
and the sub-problem 2 can also be implemented in a distributed manner as explained in [14]. 
Therefore, the proposed RDS based algorithm can also be implemented in a distributed 
fashion. Secondly, through observing the recursive rules as shown in (14), we can find that the 
proposed algorithm only makes use of the results obtained by the previous iteration. It 
indicates that the proposed algorithm only needs to store the results obtained during the 
previous iteration. This implementation procedure can save the memory required for storage 
significantly and carry out online computations easily. Thirdly, based on the step size defined 
by (11), the proposed algorithm can provide a parameter for controlling the accuracy of the 
optimization results, which cannot be achieved by the traditional subgradient algorithms. 
Finally, since the deflected coefficient can be chosen randomly at the beginning, we do not 
need to set this parameter by some difficult trial and error methods as adopted by the 
traditional subgradient algorithms. 

5. Illustrative Results 
To illustrate the advantages of the proposed algorithm, we developed a simulation package in 
MATLAB. To find a solution for (3) using a centralized algorithm and a solution for the 
sub-problem 2 in (6) as proposed by [14], we used CVX, a package for specifying and solving 
convex programs [20]. For each simulation, we used a random network topology model in 
which all nodes were randomly and uniformly distributed within a square area with a unit 
density. The side length of the square area is set to the square root of |N|. Any two nodes are 
viewed as reachable when the distance between them is less than a certain communication 
radius r. We used multicast scenarios with one session and two sink nodes in the simulations. 
We also used an auxiliary interference model to model a conflict graph. We selected the 
left-most node as the source node and the right-most multiple nodes as sink nodes for each 
multicast scenario within a randomly generated network topology. 

5.1 Performance comparison 
    For illustrating a performance comparison of different schemes, we carried out simulations 
for the following four algorithms: i) a fully centralized algorithm presented in [21] indicating 
the approximate global optimization results; ii) the Greedy Maximal Weighted Independent 
Set (GMWIS) based algorithm proposed in [13]; iii) the K-Random Maximal Stable-sets 
Subgradient (K-RMSS) based traditional subgradient algorithm proposed by us recently in 
[14], and iv) the K-Random Maximal Stable-sets Deflected Subgradient (K-RMSDS) 
algorithm proposed in this paper, in which we solve the sub-problem 2 by randomly sampling 
K maximal stable sets, as proposed in [14]. 
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For a fair comparison, both the K-RMSS and the GMWIS adopt the following rule for 
updating the step size: δ[n]= α/(β+n). A detailed information on this rule can be found in [13]. 
As presented in Table 2, the K-RMSDS algorithm need to set the following two iteration 
parameters: a predefined accuracy requirement ε and the deflected coefficient φ. Moreover, 
both the communication radius r and the iteration parameters always use the same values as 
listed in the following Table 3.  

Table 3. Simulation parameters 

Parameters α β φ ε r 
GMWIS 0.6 1 - 

0.001 1.6 K-RMSS 0.6 1 - 
K-RMSDS - - 0.6 

5.1.1 Optimality 
    Since the size of the feasible search space increases exponentially with the number of sink 
nodes for the centralized algorithm proposed in [21], we set the number of sink nodes to 2 (i.e. 
|T|=2) for the convenience of comparing with the approximate global optimization results. 
However, the number of nodes is set to vary from 6 to 20 in simulations. For each multicast 
scenario with a fixed number of nodes, we produced 100 random network topologies for 
simulations and compare the average values. Moreover, for each simulation scenario, both the 
K-RMSS and the K-RMSDS algorithms use the same K value, which is listed in Table 4. 

Table 4. K values 

Number of Nodes, i.e. |N| 6 8 10 12 14 16 18 20 

K values 5 10 15 20 30 40 50 60 

Finally, by computing the average values over 100 random network topologies for the four 
algorithms mentioned above, we obtain the final results, which are shown in Fig. 1. 
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Fig. 1. Performance comparisons over 100 random network topologies 
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We illustrate a performance comparison of various algorithms in Fig. 1. This figure shows 
that both the K-RMSS and the K-RMSDS algorithms outperform the GMWIS algorithm 
significantly. It can be explained by the search space size adopted by different algorithms: the 
GWMIN algorithm uses only one MSS while the other two algorithms use K MSSs by random 
sampling algorithm for obtaining the optimization results during each iteration. This means 
that the searching space in the K-RMSS and the K-RMSDS algorithms is enlarged K times 
compared to the GMWIS algorithm, which thus results in a better optimization performance. 
Another observation that can be made from the Fig. 1 is that the K-RMSDS outperforms the 
K-RMSS significantly. This is because the K-RMSDS algorithm uses the previously computed 
subgradient information in each iteration through the computation of the deflected subgradient. 
This results in a searching direction in each iteration of the K-RMSDS algorithm that is much 
more accurate than traditional subgradient algorithms. Additionally, the proposed K-RMSDS 
algorithm can control the precision of the optimization solution for the dual problem by 
changing the precision parameter ε. Hence, this algorithm can improve the optimization results 
without increasing the size of search space. Finally, Fig. 1 shows that the performance of the 
K-RMSDS algorithm is identical to the global optimization result for most scenarios. 
Accordingly, it is expected that the K-RMSDS algorithm can approximate the global 
optimization search results by choosing a large values for K and setting a smaller value for ε.  

5.1.2 The number of sink nodes 
    In order to study the effect of the number of sink nodes on both the K-RMSS and the 
K-RMSDS algorithms, we also carried out simulations for multicast scenarios with 20 nodes 
over 100 random network topologies. In this case, we keep all other simulation parameters 
similar to the ones considered for the result in Fig.1, except that we vary the number of sink 
nodes. By computing the average values over 100 random network topologies for the K-RMSS 
and the K-RMSDS algorithms, we obtain the average optimum energy consumption values, 
which are specified in the following table. 
 

Table 5. The average optimum energy values over 100 random topologies  

Number of sink nodes, i.e.|T| 6 7 8 9 10 
60-RMSS 7.99 8.01 8.67 8.37 8.46 
60-RMSDS 5.19 4.79 4.92 5.14 5.24 
Performance gain 35% 40% 43% 39% 38% 

   

  The values in Table 5 show that the K-RMSDS scheme can provide a performance gain of 
more than 35% compared with the K-RMSS scheme. This indicates that the K-RMSDS 
scheme can outperform the K-RMSS scheme significantly for the multicast scenarios with 
variable group size. In addition, for both the K-RMSS and the K-RMSDS, we have noted that 
increasing the number of sink nodes has no significant effect on the optimum results. This 
observation can be explained as follows: independent of the number of sink nodes, for 
improving the multicast efficiency, the optimization algorithm will select as many nodes as 
possible for taking part in the NC operations. This results in almost all of the nodes having to 
carry out the NC operations for load balancing. Therefore, for multicast scenarios with a fixed 
number of total nodes, the variable number of sink nodes has no significant impact on the 
optimal values obtained by the algorithms.  
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5.1.3 Convergence and complexity  
Next, we compare the convergence performance of different schemes. For this purpose, 

without loss generality, we choose multicast scenarios with 20 nodes. In the following figures, 
we present four snapshots of typical convergence performances in simulations with four 
random topologies using different values of |T| and K. 
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a. |T|=10，K=60 
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b. |T|=10，K=30 
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c. |T|=5，K=60 
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d. |T|=5，K=30 

Fig. 2. Convergence comparisons  

From the four illustrations presented in Fig. 2, we can see that the performance of both the 
K-RMSS and the K-RMSDS algorithms are always better than the GWMIN algorithm. Similar 
to the analysis in Section 5.1.1 and 5.1.2, it indicates that the same results hold for the 
multicast scenarios with different group sizes. Moreover, these illustrations show that the 
K-RMSDS can outperform K-RMSS significantly for all of the four cases.  

The illustrations show that the convergence rate of the K-RMSDS scheme is almost same 
as that of the GWMIS scheme, and is much faster than that of the K-RMSS scheme. As shown 
in Fig. 2. d, both the GWMIS and the K-RMSDS can converge within 20 iterations. However, 
the K-RMSS scheme needs about 55 iterations for the convergence in this case, which has a 
much slower convergence performance than the other two schemes.  

Finally, to have a fair comparison of the efficiencies between the K-RMSS and the 
K-RMSDS, we recorded the running times of 500 iterations for each simulation and then 
computed the average running time for one iteration. The resulting values are specified in 
Table 6. The simulations have been carried out under the following software and hardware 
environments: CVX (ver.2.0), MATLAB (ver.7.11.0), Windows 10 OS, 2.93GHz Intel 2 Duo 
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CPU and 4G RAM. 
Table 6. Comparisons on the average running time for one iteration 

Total number of nodes, i.e. |N| 6 12 16 20 

Number of sink nodes, i.e.|T| 3 6 8 10 

K-RMSS 
K=60 0.80s 1.09s 1.61s 2.53s 
K=30 0.74 1.00s 1.45 2.12s 

K-RMSDS 
K=60 0.74s 1.08s 1.62s 2.49s 
K=30 0.72 1.00s 1.43 2.12s 

Table 6 shows that the average running time of K-RMSDS with K=60 or K=30 is 
approximately the same as that of the K-RMSS algorithm. Furthermore, from Fig. 2, we can 
observe that the K-RMSDS can converge in less number of iterations compared to the 
K-RMSS algorithm. Therefore, both observations indicate that the convergence performance 
of the K-RMSDS scheme is much better than that of the K-RMSS scheme. Finally, we would 
like to point out that, as shown in Table 6, the average running time decreases with a decrease 
of the value of K for both schemes. It means that, for both the K-RMSS and the K-RMSDS, the 
parameter K can provide a tradeoff between the optimization results and the efficiency. 

5.2 Stability Analysis of the K-RMSDS algorithm 
    For the traditional subgradient algorithms, the iteration parameters have to be predefined 
carefully through trial and error methods for obtaining a robust performance. Otherwise, the 
algorithm will be quite unstable and it cannot converge in some cases. For the GMWIS and the 
K-RMSS algorithms, the parameters α and β are the parameters that need to be chosen by trial 
and error methods. However, to achieve a good convergence and accuracy by the proposed 
K-RMSDS algorithm, the parameters K and ε  can be pre-set easily according to practical 
scenarios, and the deflected coefficient φ can be set randomly. To validate the algorithm 
stability, we chose random network topologies with 15 nodes and two sink nodes for the 
simulation studies. For comparison, the value of α is uniformly sampled within the interval 
(0,1) and β is set to 1 for each simulation in case of both the GMWIS and the K-RMSS 
algorithms. For the K-RMSDS algorithm, we set ε=0.0001 and set the deflected coefficient φ 
as a uniformly distributed random variable in (0,1). For both the K-RMSS and the K-RMSDS 
algorithms, the value of K is set to 40 for a fair comparison. We also carried out 100 
simulations for each algorithm and computed the average and variance of the convergence 
results and the resulting values are specified in Table 7. 

Table 7. Comparisons over 100 random network topologies with 15 nodes 

Algorithm GMWIS 40-RMSS 40-RMSDS 
Average Optimum Results 7.03 6.49 5.86 

Variances 2.63 0.13 0.003 
Global Optimum Result 5.58 

According to Table 7, we can note that the variance of the GMWIS algorithm is very large. 
This leads to the observation that we need to choose the iteration parameters of the algorithm 
carefully for achieving a good convergence and accuracy performance. In addition, we can see 
that the variance of the K-RMSS is much less than that of the GMWIS, but much larger than 
that of the K-RMSDS. Furthermore, the average value of the K-RMSS is much higher than the 
global optimization result. It indicates that, for achieving the best optimization performance by 
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the K-RMSS, we have to choose iteration parameters carefully in advance by some trial and 
error methods. However, for the K-RMSDS algorithm values shown in this table, we can find 
that the variance of the algorithm is quite small and the average value is very close to the 
global optimization result. It means that, the K-RMSDS algorithm is robust against the choice 
of values for the parameters φ, K and ε. 

Finally, for studying the influence of the parameter K on the algorithm, we carried out 
simulations by increasing the value of K for the simulation scenarios described above. The 
results are shown in Fig. 3. 
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Fig. 3. Performance comparisons for K-RMSDS with different K  
 

From this figure, we can see that the performance of the K-RMSDS improves significantly 
with an increase in the value of the parameter K. Specially, the performance of the K-RMSDS 
can almost achieve the approximate global optimization result with K=70. This is because the 
search space increases with an increase in the value of the parameter K. Moreover, from Fig. 3, 
we can observe that the rate of convergence of the algorithm remains constant independent of 
the value of the random deflected coefficient. That is, for this scenario, the algorithm can 
always converge within about 200 iterations for different choice of value for K. This 
observation also leads us to conclude that the proposed random optimization algorithm has a 
stable and robust performance. 

6. Conclusions 
The optimization of energy consumption for real-time multicast in wireless multi-hop 

networks is a challenging problem. For solving this optimization problem, using an 
optimization framework of joint NC and scheduling via conflict graph models, we proposed a 
K-Random Maximal Stable-sets Deflected Subgradient (K-RMSDS) algorithm. Moreover, we 
derived a corresponding set of recursive formulas suitable for practical applications. The 
illustrative results showed that the proposed algorithm not only outperforms the existing 
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algorithms, but also has better performance in terms of stability and robustness. Although the 
studies in this paper have shown that the proposed algorithm has an excellent performance, 
many topics still need further studies. For example, a study on the choice of parameter K. A 
distributed method for implementation of the proposed algorithm for practical systems without 
a loss of accuracy.  

Finally, we would like to point out some potential interesting applications of the proposed 
RDS based primal-dual algorithm: 

1. The architecture of the proposed RDS algorithm is general. Hence, it can be applied in 
any primal-dual solution for a similar optimization framework with joint NC and scheduling. 
Therefore, by applying the proposed RDS based primal-dual algorithm, it is expected to result 
in an improved performance for solving the similar optimization problems such as those with 
inter-session NC [22][23], with packet scheduling [24], and with strict delay constraints 
[25][26] etc. The extended applications mentioned above are worthy of deeper study in the 
future.  

2. It is also interesting to study how to apply the proposed algorithm for solving a similar 
optimization problem with more accurate interference models (IMs). Recent studies have 
shown that the optimization framework with more accurate IMs, such as the 
Signal-to-Interference-and-Noise-Ratio (SINR) based probability IM proposed in [16], can 
perform more efficiently than those with conflict-free based protocol IMs adopted in this 
paper. We thus expect that a significant performance gain can be achieved when applying the 
proposed RDS based algorithm approach for solving the similar optimization problem with 
accurate IMs.  

Appendix: Derivation of the recursive primary recovery formulas 
First, Sherali and Choi [17] have proven that, when choosing a random deflected coefficient 

φ (0<φ<1), the convex coefficients τl[n-1] adopted in Eq. (13) can be computed by  
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By observing (17), we can find that this ratio is independent of the parameter l, which is 

denoted by τ΄[n-1] here. Therefore, we can derive a recursive algorithm for computing X*[n] in 
the primary recovery algorithm as follows 
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Then, substituting (16) and (17) into (18), we can obtain the recursive formula 
corresponding to X*[n] as follows 
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Similarly, the recursive formula corresponding to Z*[n] can be obtained by 
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This completes the derivation. 
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