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Abstract 
 

Signal individual reconnaissance and identification is an extremely important research topic in 
non-cooperative domains such as electronic countermeasures and intelligence reconnaissance. 
Facing the characteristics of the complexity and changeability of current communication 
environment, how to realize radiation source signal individual identification under the low 
SNR conditions is an emphasis of research. A novel emitter individual identification method 
combined bi-spectrum analysis with wavelet feature is presented in this paper. It makes a 
feature fusion of bi-spectrum slice characteristics and energy variance characteristics of the 
secondary wavelet transform coefficient to identify MFSK signals under the low SNR 
(signal-to-noise ratios) environment. Theoretical analyses and computer simulation results 
show that the proposed algorithm has good recognition performance with the ability to 
suppress noise and interference, and reaches the recognition rate of more than 90% when the 
SNR is -6dB. 
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1. Introduction 

With the rapid development of digital signal processing technology, the radiation source 
signal individual identification is facing more severe challenges in non-cooperative domains 
such as electronic countermeasures and intelligence reconnaissance. That is, the mission is to 
realize the identification of emitter signal types and individual of the same type emitter signal 
by using a little of priori knowledge under the low SNR (signal to noise ratio) condition, and 
simultaneously, meet the real-time requirements of actual engineering application [1]. FSK 
(frequency shift keying) signal is a typical signal type in radar and communication field, and 
the study and research of the characteristics of MFSK (multiple frequency shift keying) signal 
are always the hot spot. Therefore, MFSK signal individual identification has essential 
application value and research significance. 

A lot of researchers have done a lot of research of FSK signal individual recognition. 
Typical process of FSK signal individual identification is divided into three steps: signal 
preprocessing, parameter estimation or characteristics analysis and recognition algorithm. 
From the existing literatures, MFSK signal recognition methods can be divided into 2 
categories: methods based on the likelihood function estimation [2-5], and methods based on 
signal feature extraction [6-11]. Obviously, different recognition methods have a tradeoff 
between computational complexity and identification accuracy [12]. In order to meet the 
requirements of practical applications, researchers have been exploring new solutions to 
improve the effectiveness of individual identification on the basis of the current 
communication environment. In the aspect of feature extraction, O.A.Dobre proposed a 
method to identify MFSK signal by using the first order cyclostationary feature without 
estimating parameters such as timing signal, instantaneous frequency [13]. And the 
recognition rate achieves about 90% when the SNR is -4dB. Zhang set the average 
polymerization degree of signal’s instantaneous frequency as new feature [14], which needs to 
estimate signal’s instantaneous frequency firstly. Li presented a classification algorithm based 
on wavelet and higher-order cumulants [15], whose experiments show that Gaussian white 
noise can be suppressed effectively by the analysis of extracted characteristics parameters. 
Reference [16] studied the singularity characteristics of wavelet modulus. Zeng investigated 
the time-frequency distribution characteristics of the intercepted signal to extract peak ratio 
and peak number of Hough transform as identification features [17]. The method achieves 
great identification results when the SNR is -4dB. Zhao utilized multi-fractal characteristics 
for modulation order identification of MFSK signal [18], and verified that the algorithm is 
unaffected by the α  stable distribution noise and Gaussian noise. 

On the one hand, according to above methods, it can be seen that higher order spectrum 
analysis is a very useful tool for non-stationary signal analysis and feature extraction [19-21], 
which has been used to MFSK signal recognition [22-23] in many researches. Theoretically, 
higher order spectrum method can not only completely inhibit Gaussian distribution noise and 
retain abundant phase information, but also improve the accuracy of signal processing. In a 
large number of high order spectrum analytic techniques, bi-spectrum is the lowest order 
method, which meets the real-time requirement of signal processing. 

On the other hand, due to the characteristics of multi-resolution analysis of wavelet analysis, 
the signal can be divided into low frequency approximation and a series of high frequency 
details. Thus, wavelet analysis can show signal’s detail information in different scales [24-26]. 
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Although the Gaussian noise and interference can be completely inhibited by bi-spectrum 
analysis theoretically, the non-Gaussian noise is powerless. The existence of non-Gaussian 
noise will disturb or even submerge subtle features, which increases the difficulty of fine 
feature extraction. 

Through the elaboration of the merits and drawbacks of bi-spectrum and wavelet analyses, 
we can conclude that single analytic method cannot achieve ideal MFSK signal individual 
identification under low SNR. In order to address this problem, we adopt the idea of 
information fusion and propose two-dimensional feature fusion algorithm based on above two 
recognition methods. And the proposed algorithm combines bi-spectrum slice characteristics 
and wavelet coefficients characteristics to identify MFSK signal under low SNR condition. 

This paper is organized as follows. Firstly, Section 2 and Section 3 present the bi-spectrum 
feature extraction and the wavelet low frequency feature extraction method respectively. Then, 
Section 4 presents the feature fusion method under low SNR conditions, Section 5 reports 
experimental results and analysis. Finally, conclusions are presented in Section 6. 

2. Bi-spectrum Feature Extraction 
In the field of signal processing, the first order statistics and the second order statistics play an 
important role. But for many signals, especially nonlinear signal, the characteristics cannot be 
well detected and represented by the second order statistics due to the influence of the devices 
or transmission interferences. As higher order statistics has one important characteristic that 
signal’s phase information can be reflected by the second order spectrum, it can be used to 
extract the subtle features of MFSK signal individuals. 

2.1 Introduction of bi-spectrum slice 

Assume that the observed data { }: (1), (2),..., ( )x x x x N  is a real random sequence ( N  
denotes sequence length), the probability density function of x  is ( )p x . The corresponding 
characteristic function ( )ωΦ  can be denoted as: 

 ( ) ( ) [ ]j x j xp x e dx E eω ωω
+∞

−∞
Φ = =∫   (1) 

And the first order characteristic function of N-dimensional random vector 

1 2[ , ,... ]T
Nx x x x=  is defined as: 

 1 1 2 2( ... )( ) { } { }
T

N Nj x x xj xE e E e ω ω ωωω + + +Φ = =   (2) 

where, ...,1 2[ , , ]T
Nω ω ω ω= .  

Take the logarithm for formula (1) (2), and the second order characteristic functions of 
x , x  are separately defined as: 

 ( ) ln ( ) ln { }j xE e ωω ωΨ = Φ =   (3) 

 ( ) ln ( ) ln { }
Tj xE e ωω ωΨ = Φ =   (4) 

The k -order moment of x  is defined as follows. 

 0
( )m ( ) | { }

k
k k k

k

dj E x
d ω

ω
ω =

Φ
= − =   (5) 
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Therefore, the k -order cumulant of x  is: 

 0
( )( ) | ( ) ( )

k
k k k

k k

dc j j
d ω

ω ω
ω =

Ψ
= − = − Ψ   (6) 

From formula (5) (6), we can conclude that km and kc  are the k -derivative of the first 
order characteristic function and the second characteristic function at the origin respectively. 

For zero mean stationary random process { ( )}x n , its k -order moment and k -order 
cumulants are separately represented as follows. 
 1 2 1 1 1( , ,..., ) [ ( ), ( ),..., ( )]kx k km E x n x n x nτ τ τ τ τ− −= + +   (7) 

 1 2 1 1 1( , ,..., ) [ ( ), ( ),..., ( )]kx k kC cum x n x n x nτ τ τ τ τ− −= + +   (8) 

And the 3rd order cumulant of observation data x  can be derived from formula (8). 

 
1 2 3

3
3 1 2 3

3
1 2 3 0

( , ,. )( , ) [ ( ), ( ), ( )] ( )xc m n cum x k x k m x k n j
ω ω ω

ω ω ω
ω ω ω

= = =

∂ Ψ
= + + = −

∂ ∂ ∂
  (9) 

where, ,m n denote time delay, and 1, 2,...,k N= . 

The bi-spectrum of x  is the two-dimensional Fourier transform of 3rd order cumulant 3xc , 
which is defined as follows. 

 ( ) 1 1 2 2

1 1

( )
1 2 3 1 2( , ) ,

k

j
x xB c e ω τ ω τ

τ τ

ω ω τ τ
−

∞ ∞
− +

=−∞ =−∞

= ∑ ∑   (10) 

Finally, when the time delays in formula (9) are equal, that is m n= , bi-spectrum slice can 
be obtained. 

 3( ) ( , ) j m
x m n m

B c m n e ω

τ

ω
+∞

−
= =

=−∞

= ∑   (11) 

2.2 Bi-spectrum slice of MFSK signals 
Fig. 1 shows the relationship between bi-spectrum and the 3rd order cumulant. Considering 

the characteristics of symmetry and periodicity, bi-spectrum estimation can be performed 
around the triangle area where contains all required information.  
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(a) Symmetric region of the 3rd order cumulant    (b) Symmetric region of bi-spectrum 
Fig. 1. The relationship between bi-spectrum and the 3rd order cumulant 
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Fig. 2 shows the bi-spectrum curves of different MFSK signals respectively. It tells us that 
the bi-spectrum distributions of 2FSK, 4FSK and 8FSK are different. Thus, we can use 
bi-spectrum characteristics to recognize different MFSK signals. 
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bispectrum of 4FSK
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(a) Bi-spectrum of 2FSK signal               (b) Bi-spectrum of 4FSK signal 

bispectrum of 8FSK
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(c) Bi-spectrum of 8FSK signal 

Fig. 2. Bi-spectrum curves of different MFSK signals 

 

Fig. 3 shows the bi-spectrum slice curves of different MFSK signals respectively. It can be 
seen that: 

(1)Gaussian noise turned into discrete, homogeneous distribution after bi-spectrum analysis, 
whose influence can be basically eliminated; 

(2)For MFSK signals with different modulation order, the frequency and phase differences 
of different signals are obvious; 

(3)Bi-spectrum slice can visually reflects the difference of several MFSK signals. The 
spectrum peak is corresponding to signal’s frequency, and the number of peaks reflects 
signal’s modulation order M. 
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(a) Bi-spectrum slice of 2FSK signal                      (b) Bi-spectrum slice of 4FSK signal 
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(c) Bi-spectrum slice of 8FSK signal 

Fig. 3. Bi-spectrum slice of different MFSK signals 

 

It can easily be verified in Fig. 3 that different MFSK signals have different bi-spectrum 
slice curves. Thus, according to the pattern that the bi-spectrum slices features of different 
signals are different, bi-spectrum slice information can be used as the feature for MFSK signal 
individual identification. 

2.3 Envelop parameter of Bi-spectrum slice 
Extracting envelope parameter of bi-spectrum slice, and establishing feature database. 
For bi-spectrum slice sequence { }: (1), (2),..., ( )B B B B N , where N  is the sequence 

length, the envelope parameter R  is defined as:  

 2

1 1

1

1( ) ( )
N N

i i

R

B i B i
N= =

=
  −  

  
∑ ∑

  (12) 

where, 
1

1 ( )
N

i
B i

N =
∑  represents 1st order moment of ( )B i , and R  represents the reciprocal of 

the variance of ( )B i . 

From formula (12), we can conclude that R  describes the envelope information of 
bi-spectrum slice sequence, which directly explains why it can be used for MFSK signal 
individual identification. 
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Fig. 4 shows the envelop parameters R  of different MFSK signals under different SNRs. It 
can be observed that the features R  of different signals are obviously different even when the 
SNR is around -6dB, which verifies the contribution of feature R  to MFSK signal individual 
identification. 
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Fig. 4. Envelop parameter R  of MFSK signals 

3. Wavelet Low Frequency Feature Extraction 
The wavelet function refers to a function with limited length and fluctuations, which is 
deduced from the Fourier transform. Fourier transform analyzes signal with a fixed window, 
while the width of the analysis window of the wavelet transform is variable.  

3.1 Introduction of wavelet transform 
Wavelet function should satisfy the following admissibility conditions, namely the wavelet 

function ( )tψ  is energy constrained: 

 
2ˆ| ( ) |

| |R
C dψ

ψ ω ω
ω

= < ∞∫   (13) 

where, ˆ ( )ψ ω is the Fourier Transform of wavelet function ( )tψ . 
Wavelet function that satisfies the condition in formula (13) means satisfying the condition 

of complete reconstruction or retaining the same resolution. Generally, ( )tψ is known as basic 
wavelet function or mother wavelet function. To fulfill the complete reconstruction condition, 
ˆ ( )ψ ω  should satisfy: 

 ˆ (0) ( ) 0t dtψ ψ
∞

−∞
= =∫   (14) 

When using scale factor a  and shift factor b to perform wavelet scaling and translation, a 
series of shifted wavelet functions with different analysis windows can be obtained. 

 ,
1( ) ( ) , ; 0
| |a b

t bt a b R a
aa

ψ ψ −
= ∈ ≠   (15) 
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Coefficient 1/ a  is added in order to ensure that the energy of the shifted and scaled 

wavelet functions , ( )a b tψ  remains the same with the mother wavelet function ( )tψ . 
The continuous wavelet transform is represented as: 

 *
,

1( , ) , ( ) ( )
| |a b

t bWf a b f f t dt
aa

ψ ψ
∞

−∞

−
= = ∫   (16) 

3.2 The first time wavelet transform of MFSK signals 
When the analyzed and wavelet analysis window are at the same symbol period, the first 

time wavelet transform of MFSK signals is: 

 

( )

*

1/2
( ( ) ) ( )

1/2

0 /2
( ( ) ) ( ) ( ( ) ) ( )

/2 0

( ) 2

1( , ) ( ) ( )

1 ( ) ( )

( )4 sin
4

i i c

i i c i i c

c i

FSK

j at j at

a
j s j s j s j s

a

j c i

c i

tCWT a s t dt
aa

Ae e haar t d at
a

A e e ds e e ds
a

aAj e
a

ω τ j ω τ

ω τ j ω τ ω τ j ω τ

ω τ j

ττ ψ

τ

ω ω
ω ω

∞

−∞

+ + +

−

+ + + + + +

−

+

−
=

= +

 
= − 

 
+ = −  +  

∫

∫

∫ ∫
  (17) 

Take absolute value of formulation (17), the expression can be changed into： 

 
( )

2 ( )4( , ) sin
4

c i
FSK

c i

aACWT a
a

ω ωτ
ω ω

+ =  +  
  (18) 

When the analyzed and wavelet analysis window are at the adjacent symbol period, the first 
time wavelet transform of MFSK signals is: 

 
1 1

1 1

*

1/2
( ( ) ) ( )

1/2

0
( ( ) ) ( ) ( ( ) ) ( )

/2

/2
( ( ) ) ( )

0

1( , ) ( ) ( )

1 ( ) ( )i i c

i i c i i c

i i c

FSK

j at j at

d
j s j s j s j s

a d

a
j s j s

j

c

tCWT a s t dt
aa

Ae e haar t d at
a

A e e ds e e ds
a

e e ds

Aj e
a

ω τ j ω τ

ω τ j ω τ ω τ j ω τ

ω τ j ω τ

ττ ψ

τ

ω

+ +

+ +

∞

−∞

+ + +

−

+ + + + + +

−

+ + +

−
=

= +


= +




− 


= −

∫

∫

∫ ∫

∫

( )

( )1 1 1

( ) ( ) /2

( ) ( ) ( ) /22

c c i c i

i i c i c i

j d j a

j j d j a

e e

e e e

ω τ ω ω ω ω

ω ω τ ω ω ω ω+ + +

+ − +

− + − +

 −

+ − − 

  (19) 

Take absolute value of formulation (19), the expression can be changed into: 
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( )

( )1 1 1

( ) ( ) /2

( ) ( ) ( ) /2

( , )

2

c i c i

i i c i c i

j d j a
FSK

c

j j d j a

ACWT a e e
a

e e e

ω ω ω ω

ω ω τ ω ω ω ω

τ
ω

+ + +

+ − +

− + − +

= −

+ − −
  (20) 

It’s apparent in formula (18) (20) that the amplitude of wavelet transform, which has sudden 
changes, is dependent on amplitude, frequency and phase of adjacent element. 

Fig. 5 shows the instantaneous frequency of different MFSK signals after the first time 
wavelet transform, and the mutation frequency can be observed clearly. 
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Fig. 5. The instantaneous frequency after the first time wavelet transform 

 
The instantaneous frequency amplitude of MFSK signals after wavelet transform can be 

approximated as followed: 
 ( ) ( ) ( )i s

i
x t Au t iT n t= − +∑   (21) 

where, iA ( 2, 4,or 8i = ) is instantaneous frequency amplitude, ( )n t  is noise frequency,  sT  
is element cycles. 

3.3 The secondary wavelet transform of MFSK signals 
The secondary wavelet transform of MFSK signal is written as:  

 1
1( ) ( )i i s

i
c t A A t iT

a
δ+= − −∑   (22) 

Fig. 6 shows the instantaneous frequency of different MFSK signals after the secondary 
wavelet transform. It is obvious that the amplitude, mutation location and distribution of the 
wavelet coefficients are different for different MFSK signals. Thus, the distribution feature of 
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the secondary wavelet transform can be used as the foundation for MFSK signal individual 
identification.  
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Fig. 6. The instantaneous frequency after the secondary wavelet transform 

 
It is clear in Fig. 6 that different MFSK signals have different instantaneous frequencies of 

the secondary wavelet transforms. Thus, according to the pattern that the low frequency 
wavelet features of different signals are different, low frequency wavelet information can be 
applied as the feature for MFSK signal individual identification. 

3.4 Energy variance of the secondary wavelet transform coefficients 
Extracting energy variance of the secondary wavelet transform coefficients, and 

establishing feature database. 
The computation expression of energy variance of the secondary wavelet transform 

coefficients 2
cσ  is defined as: 

 
2

2 2 2

1 1

1( ) ( ( ))
L L

c
i i

c i c i
L

σ
= =

 = − 
 

∑ ∑   (23) 

where, { }: (1), (2),..., ( )c c c c L  are the secondary wavelet transform coefficients.  

Fig. 7 shows the energy variance of low frequency wavelet coefficients of different MFSK 
signals under different SNRs. are different. It can be observed that the features 2

cσ  of different 
signals are obviously different even when the SNR is around -6dB, which verifies the 
contribution of feature 2

cσ  to MFSK signal individual identification. 
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Fig. 7. Energy variance of the secondary wavelet coefficients 

 

From Fig. 4 and Fig. 7, we can see that the envelope parameter of bi-spectrum slice and the 
energy variance of the secondary wavelet transform coefficients vary distinctly under high 
SNR, whereas, the envelope parameter of bi-spectrum slice is unstable under low SNR. 
Therefore, it is urgent to fuse these two features to achieve MFSK signal individual 
identification under low SNR. 

4. Feature Fusion under Low SNR Conditions 
As single feature individual recognition scheme has its instability to a certain extent because of 
random interruption, this article achieves a two-dimensional feature fusion of bi-spectrum 
slice envelop parameter and low frequency wavelet coefficients by introducing the idea of 
information fusion, which ensures the high recognition rate and robustness for MFSK signal 
individual identification under low SNR. 

In this paper, a two-dimensional feature fusion algorithm is put forward to identify MFSK 
signal individual identification. It combines the advantages of bi-spectrum analysis and 
wavelet analysis for signal processing, which combines bi-spectrum slice envelop parameter 
with low frequency wavelet coefficients of received signal to realize individual identification. 

Fig. 8 shows the diagrammatic sketch of MFSK signal individual identification. 
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Fig. 8. The schematic of MFSK signal identification 
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As we can see from Fig. 8, the specific procedure of MFSK signal individual identification 
can be summarized as follows. 

(1) Get the Bi-spectrum of observed data and analyze the Bi-spectrum slice curve. Then, 
extract envelop parameter of bi-spectrum slice as the first feature; 

(2) Get the secondary wavelet transform of observed data, and calculate its energy variance 
as the second feature; 

(3) Establish two-dimensional feature of received signal; 
(4) Introduce a template matching method based on close degree to compare the 

two-dimensional feature of received signal and feature database, and accomplish the MFSK 
signal individual identification. 

A template matching method based on close degree is adopted to verify the validity of fused 
characteristics for MFSK signal individual identification.  

Assume that there are N  categories of MFSK signals in the emitter recognition system. We 
can define the two-dimensional feature distance between the received signal and the feature 
database. 

 
2

1
| |i ij j

j
D A c

=

= −∑   (24) 

where, jc  is the th ( 1, 2)j j =  feature of the received signal, and ijA is the thj  feature of the 

( 1, 2,..., )thi i N=  signal in feature database. 
Ulteriorly, the close degree between the received signal and the thi  signal in feature 

database can be derived. 

 ( ) 1

i

DiN i
Di

= −
∑

  (25) 

When the received signal has the greatest close degree with one kind of MFSK signal in 
feature database, the type of received signal can be determined. 

5. Experimental Classification Results and Analyses 
In the simulation environment with matlab R2011b, we give two experiments about the novel 
feature fusion algorithm of MFSK signal individual identification. One is signal individual 
identification with same parameters and different number of M , and the other is signal 
individual identification with same number of M ( 4M = ) and different parameters. 

5.1 Experiment 1: Identification of different MFSK signals 
Parameters settings are shown in Table 1. It can be seen in Table 1 that simulation signals 

have different modulation types. 
 

Table 1. Parameters settings of experiment 1 
 Amplitude 

A  
Sampling 
frequency 

(MHz)sf  

Symbol rate 
1 (us)b sR T=  

Carrier 
frequency 

(MHz)cf  

Signaling 
frequency 

(MHz)f  

Initial 
phases 

2FSK 
signal 

1 500 0.5 10 f1=10 
f2=30 

0 
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4FSK 
signal 

1 500 0.5 10 f1=10 
f2=20 
f3=30 
f4=40 

0 

8FSK 
signal 

1 500 0.5 10 f1=10 
f2=20 
f3=30 
f4=40 
f5=10 
f6=20 
f7=30 
f8=40 

0 

 
Fig. 9 gives the recognition accuracy of different MFSK signals, where the SNR range is 

-10dB to 20dB. And there are 1000 sample signals at each 1dB.  
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Fig. 9. Recognition accuracy of different MFSK signals 

 
It can easily be checked in Fig. 9 that MFSK signals are completely identified when the 

SNR is above 0dB. Moreover, the recognition accuracy is more than 90% when the SNR is 
above -4dB. And the recognition accuracy is more than 80% when the SNR is about -10dB. 
Thus, the proposed algorithm realizes MFSK signal individual identification under low SNR 
conditions. 

5.2 Experiment 2: Identification of different 4FSK signals 
Parameters settings are shown in Table 2. It can be seen in Table 2 that signal 1 and signal 

2 have distinct signaling frequency, and the symbol rate of signal 2 is the double of signal 3. 
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Table 2. Parameters settings of experiment 2 
 Amplitude 

A  
Sampling 
frequency 

(MHz)sf  

Symbol rate 
1 (us)b sR T=  

Carrier 
frequency 

(MHz)cf  

Signaling 
frequency 

(MHz)f  

Initial 
phases 

Signal 
1 

1 500 1.0 10 f1=5 
f2=25 
f3=30 
f4=35 

0 

Signal 
2 

1 500 1.0 10 f1=10 
f2=20 
f3=30 
f4=40 

0 

Signal 
3 

1 500 0.5 10 f1=10 
f2=20 
f3=30 
f4=40 

0 

 
Fig. 10 gives the recognition accuracy of different 4FSK signals. The SNR range is -5dB to 

20dB, and there are 1000 sample signals at each 1dB.  
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Fig. 10. Recognition accuracy of 4FSK signals 
 
 

In Fig. 10, the average recognition accuracy reached 90% when the SNR is above 3dB, 
which verified the effectiveness of the proposed algorithm for 4FSK signal individual 
identification. 

Based on above two experimental results and analyses, the proposed two-dimensional 
feature fusion algorithm not only realizes different MFSK signal individual identification, but 
also achieves different 4FSK signal individual identification. 

Thus, compared to MFSK signal individual identification methods with single feature, the 
superiority of the proposed algorithm is overt, and the significance and contribution of this 
paper is proved. 
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6. Conclusion 
On the basis of analyzing the characteristics of bi-spectrum analysis and wavelet transform, 

we propose a novel MFSK signal individual identification algorithm. The novel algorithm 
combines the envelope characteristic of bi-spectrum slice with energy variance of the 
secondary wavelet transform coefficients to recognize different MFSK signals. Theoretical 
analyses and computer simulation results demonstrate that this algorithm has great recognition 
performance with the ability to suppress noise and interference, and reaches the accurate 
recognition rate of more than 90% when the SNR is -6dB.  

In further study, as an individual identification algorithm of MFSK signal is investigated in 
this paper, how to apply the algorithm to signals with other modulation types has great 
research significance. 
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