참고문헌
- Ansari, R., Gholami, R., Hosseini, K. and Sahmani, S. (2011), "A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory", Math. Comput. Model., 54(11-12), 2577-2586. https://doi.org/10.1016/j.mcm.2011.06.030
- Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51(1), 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
- Arda, M. and Aydogdu, M. (2016), "Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity", Appl. Phys. A., 122(3), 219.
- Aydogdu, M. (2009a), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E Low-Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Aydogdu, M. (2012a), "Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics", Int. J. Eng. Sci., 5617-28.
- Aydogdu, M. (2014), "Longitudinal wave propagation in multiwalled carbon nanotubes", Compos. Struct., 107, 578-584. https://doi.org/10.1016/j.compstruct.2013.08.031
- Aydogdu, M. (2009b), "Axial vibration of the nanorods with the nonlocal continuum rod model", Phys. E Low-dimensional Syst Nanostructures, 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2012b), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 4334-40.
- Aydogdu, M. and Arda, M. (2014), "Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., doi: 10.1007/s10999-014-9292-8
- Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004
- Demir, C., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15(1), 57-65.
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 24305. https://doi.org/10.1063/1.2423140
- Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta Mech., 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2007), Nonlocal Continuum Field Theories, Springer, New York
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solid., 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
- Huang, Z.X. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long range interactions", Int. J. Solid. Struct., 49(1516), 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Karaoglu, P. and Aydogdu, M. (2010), "On the forced vibration of carbon nanotubes via a non-local Euler--Bernoulli beam model", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224(2), 497-503. https://doi.org/10.1243/09544062JMES1707
- Kiani, K. (2010), "A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect", Int. J. Mech. Sci., 52(10), 1343-1356. https://doi.org/10.1016/j.ijmecsci.2010.06.010
- Kiani, K. (2014), "Nonlocal continuous models for forced vibration analysis of two-and three-dimensional ensembles of single-walled carbon nanotubes", Phys. E Low-dimens. Syst. Nanostruct., 60229-245.
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Phys. E Low-dimens. Syst. Nanostruct., 43(1) 387-397. https://doi.org/10.1016/j.physe.2010.08.022
- Kiani, K. (2014), "Nonlocal discrete and continuous modeling of free vibration of stocky ensembles of vertically aligned singlewalled carbon nanotubes", Curr. Appl. Phys., 14(8), 1116-1139. https://doi.org/10.1016/j.cap.2014.05.018
- Kiani, K. (2014), "In and out of plane dynamic flexural behaviors of two dimensional ensembles of vertically aligned singlewalled carbon nanotubes", Physica B: Condens. Matter., 449, 164-180. https://doi.org/10.1016/j.physb.2014.04.044
- Kiani, K. (2014), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energybased integrodifferential model", Compos. Struct., 139, 151-166.
- Kiani, K. (2010), "Nonlocal integro differential modeling of vibration of elastically supported nanorods", Phys. E Low-dimens. Syst. Nanostruct., 83, 151-163.
- Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
- Murmu, T. and Adhikari, S. (2010), "Non local effects in the longitudinal vibration of doublenanorod systems", Physica E, 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023
- Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Phys. E Low-dimens. Syst. Nanostruct., 43(4), 1015-1020. https://doi.org/10.1016/j.physe.2010.12.004
- Narendar, S. and Gopalakrishnan, S. (2010), "Nonlocal scale effects on ultrasonic wave characteristics of nanorods", Phys. E Low-dimens. Syst. Nanostruct., 42(5), 1601-1604. https://doi.org/10.1016/j.physe.2010.01.002
- Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B-Eng, 42(7), 2013-2023 https://doi.org/10.1016/j.compositesb.2011.05.021
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Reddy, J.N.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281. https://doi.org/10.1063/1.1625437
- Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Phys. E Low-dimens. Syst. Nanostruct., 43(1), 182-191. https://doi.org/10.1016/j.physe.2010.07.003
- Truax, S., Lee, S.W., Muoth, M. and Hierold, C. (2014), "Axially tunable carbon nanotube resonators using co-integrated microactuators", Nano Lett., 14(11), 6092-6. https://doi.org/10.1021/nl501853w
- Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solid. Struct., 43(2), 254-265. https://doi.org/10.1016/j.ijsolstr.2005.02.047
- Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 75702. https://doi.org/10.1088/0957-4484/18/7/075702
피인용 문헌
- Nonlinear longitudinal forced vibration of a rod undergoing finite strain 2017, https://doi.org/10.1177/0954406217716957
- Dynamic stability of harmonically excited nanobeams including axial inertia pp.1741-2986, 2018, https://doi.org/10.1177/1077546318802430
- Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates vol.125, pp.2, 2019, https://doi.org/10.1007/s00339-019-2429-8
- Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium vol.25, pp.10, 2016, https://doi.org/10.1007/s00542-019-04446-8
- Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix vol.13, pp.4, 2020, https://doi.org/10.1007/s12517-020-5168-4
- Forced Axial Vibration of a Single-Walled Carbon Nanotube Embedded in Elastic Medium under Various Moving Forces vol.63, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.63.112
- A two-unknown nonlocal shear and normal deformations theory for buckling analysis of nanorods vol.42, pp.7, 2020, https://doi.org/10.1007/s40430-020-02451-x
- Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects vol.26, pp.8, 2020, https://doi.org/10.1007/s00542-020-04802-z
- Vibrations of the Euler-Bernoulli Beam Under a Moving Force based on Various Versions of Gradient Nonlocal Elasticity Theory: Application in Nanomechanics vol.42, pp.4, 2016, https://doi.org/10.2478/sgem-2019-0049