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Abstract

A modalized Łukasiewicz three-valued propositional logic will be proposed in this paper which
there are three modalities [t]; [m]; [f] to represent the three values t; m; f; respectively. And a
Gentzen-typed deduction system will be given so that the the system is sound and complete
with respect to the Łukasiewicz three-valued semantics Ł3, which are given in soundness
theorem and completeness theorem.
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1. Introduction

The three-valued logics are traditional and have been studied in variant ways ( [4–7, 14]).
There are the following three-valued logics:
• Bochvar’s three-valued logic ( [3, 6]), which logical language contains the logical connec-
tives: ∨,∧,→,↔,≡,=, and the following semantics:

p ∧ q p ∨ q p→ q

p
q 1 0 -1 1 0 -1 1 0 -1

1 1 0 -1 1 0 1 1 0 -1
0 0 0 0 0 0 0 0 0 0
-1 -1 0 -1 1 0 -1 1 0 1

p↔ q p ≡ q p = q

p
q 1 0 -1 1 0 -1 1 0 -1

1 1 0 -1 1 -1 -1 1 -1 -1
0 0 0 0 -1 1 1 -1 1 -1
-1 -1 0 1 -1 1 1 -1 -1 1

•Kleene’s three-valued logic ( [8, 14]), which logical language contains the logical connectives:
¬,∨,∧,→, and the following semantics:

¬p p ∧ q p ∨ q p→ q

p
q 1 0 -1 1 0 -1 1 0 -1

1 -1 1 0 -1 1 1 1 1 0 -1
0 0 0 0 -1 1 0 0 1 0 0
-1 1 1 -1 -1 1 0 -1 1 1 1
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• Łukasiewicz’s three-valued logic ( [10, 11]), which logical
language contains the logical connectives: ¬,M,L, I,∨,∧,≺
,≡, and the following semantics:

p ¬p Mp Lp Ip

t f t t f

m m t f t

f t f f f

and

p ∧ q p ∨ q p ≺ q p ≡ q

p

q
t m f t m f t m f t m f

t t m f t t t t m f t m f

m m m f t m m t t m m t m

f f f f t m f t t t f m t

• Post’s three-valued logic ( [12, 13]), which logical lan-
guage contains the logical connectives: ¬,∨,∧,→,↔, and the
following semantics:

¬p p ∨ q p ∧ q p→ q p↔ q

p

q
t m f t m f t m f t m f

t f t t t f f m t m m f f f

m m t m m f t m t m f f t m

f t t m f m m m t t t f m f

In such logics, the negation ¬ is contrary, not contradictory as
in the traditional two-valued logics. Avris ( [1, 2]) gave a sound
and complete Gentzen deduction system for such three-valued
logics in which the intermediate value m has no contribution
to the deduction, so that the system for the three-valued logics
works for the four-valued logics, the five-valued logics, and so
on.

Zhu ( [15–17]) proposed a three-valued logic, called the
intermediate logic, in which a creative unary logical connective
∼ is given such that ∼ A is true if and only if the truth-value
of A is m, which makes the intermediate logic have different
Gentzen deduction system from the traditional one ( [9]).

To represent the intermediate values in the logic, we should
introduce unary modalities [t], [m], [f], so that [t]A is true iff A
is true; [m]A is true iff A is intermediate; and [f]A is true iff A
is false. Hence, we shall give a modalized propositional logic
which logical language contains the following logical symbols:
• the unary connectives: ¬,M,L, I;

• the unary modalites: [t], [m], [f]; and
• the binary connectives: ∧,∨,≺,≡ .

We will give a sound and complete Gentzen deduction system
for Łukasiewicz’s three-valued propositional logic, that is, for
any sequent Γ⇒ ∆,

• The soundness theorem: If `Ł3
Γ⇒ ∆ then Γ |=Ł3

∆.

• The completeness theorem: If |=Ł3
Γ⇒ ∆ then Γ `Ł3

∆.

This paper is organized as follows: the next section defines
the basic elements in Łukasiewicz’s three-valued logic: the
logical language, syntax and semantics; Section 3 gives a de-
duction system for Łukasiewicz’s three-valued propositional
logic and proves the soundness theorem; Section 4 proves the
completeness theorem for Łukasiewicz’s three-valued proposi-
tional logic, and Section 5 concludes the whole paper.

Our notation is standard, and a reference is [9].

2. The Modalized Łukasiewicz Three-Valued
Propositional Logic

Let the logical language contain the following symbols:

• propositional variables: p0, p1, ...;

• modalities: [t], [m], [f],

• unary logical connectives: ¬,M,L, I, and

• binary logical connectives: ∧,∨,≺,≡ .
Formulas:

A ::= p (atomic)
|[t]A1|[m]A1|[f]A1 (modalized)
|¬A1|MA1|LA1|IA1 (unary connective)
|A1 ∧A2|A1 ∨A2|A1

≺ A2|A1 ≡ A2 (binary connective).

Let v be a function from the propositional variables to Ł3 =

({t, m, f},≤).

Define

v(A) =


v(p) if A = p

g∗(v(A1)) if A = [∗]A1

f�(v(A1)) if A = �A1

h•(v(A1), v(A2)) if A = A1 •A2,

where ∗ ∈ {t, m, f}, � ∈ {¬,M,L, I}, • ∈ {∧,∨,≺,≡} and

gt gm gf

t t f m

m m t f

f f m t

f¬ fM fL fI

t f t t f

m m t f t

f t f f f

and
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h∧ h∨ h≺ h≡

p

q
t m f t m f t m f t m f

t t m f t t t t m f t m f

m m m f t m m t t m m t m

f f f f t m f t t t f m t

Given two sets Γ,∆ of formulas, define

v(Γ) = min{v(A) : A ∈ Γ},
v(∆) = max{v(A) : A ∈ ∆},

where the ≤-relation is that of Ł3.

Given a sequent δ = Γ ⇒ ∆, we say that v satisfies δ,
denoted by v |=Ł3

δ, if v(Γ) ≤ v(∆).

A sequent δ is valid, denoted by |=Ł3
δ, if for any assignment

v, v |=Ł3
δ.

Assume that [t]p, [m]p, [f]p corresponds to the three values:
+1, 0,−1, respectively. Then, we have

[t](A ∧B) = [t]A∧[t]B

[m](A ∧B) = [t]A[m]B∨[m]A[t]B∨[m]A[m]B

∨[m]A[f]B∨[f]A[m]B

[f](A ∧B) = [t]A[f]B∨[f]A[t]B∨[f]A[f]B;

[t](A ∨B) = [t]A[t]B∨[t]A[f]B∨[f]A[t]B

[m](A ∨B) = [m]A[m]B∨[m]A[f]B∨[f]A[m]B

∨[t]A[m]∨[m]A[t]B

[f](A ∨B) = [f]A[f]B,

where ∧,∨ denote ∧,∨ in the two-valued propositional logic,
respectively, and AB denotes A∧B. Similarly we have the
equivalences for→,≺,≡ and = .

3. The Gentzen Deduction System

The Gentzen deduction system contains the following axioms
and deduction rules.
• Axioms:

Γ, [∗]p⇒ [∗]p,∆; Γ, [∗1]A, [∗2]A⇒ ∆;

Γ, [�]p⇒ [�]p,∆, Γ, [�1]A, [�2]A⇒ ∆,

Γ⇒ [t]p, [m]p, [f]p,∆,

where ∗1 6= ∗2, �1 6= �2.
• The deduction rules for modalities:

Γ, [t]A⇒ ∆

Γ, [t][t]A⇒ ∆
([t][t]L)

Γ, [m]A⇒ ∆

Γ, [t][m]A⇒ ∆
([t][m]L)

Γ, [f]A⇒ ∆

Γ, [t][f]A⇒ ∆
([t][f]L)

Γ, [m][t]A⇒ ∆
([m][t]L)

Γ, [m][m]A⇒ ∆
([m][m]L)

Γ, [m][f]A⇒ ∆
([m][f]L)

Γ, [f]A∨[m]A⇒ ∆

Γ, [f][t]A⇒ ∆
([f][t]L)

Γ, [t]A∨[f]A⇒ ∆

Γ, [f][m]A⇒ ∆
([f][m]L)

Γ, [t]A∨[m]⇒ ∆

Γ, [f][f]A⇒ ∆
([f][f]L)

Here, for the simplicity, we miss the deduction rules of the right
side, and the same for the following rules for the unary logical
connectives.

• The deduction rules for unary logical connectives:

Γ, A⇒ ∆

Γ,¬¬A⇒ ∆
(¬¬L)

Γ, [f]A⇒ ∆

Γ,¬MA⇒ ∆
(¬ML)

Γ, [m]A∨[f]A⇒ ∆

Γ,¬LA⇒ ∆
(¬LL)

Γ, [t]A∨[f]A⇒ ∆

Γ,¬IA⇒ ∆
(¬IL)

Γ, [m]A∨[f]A⇒ ∆

Γ,M¬A⇒ ∆
(M¬L)

Γ, [t]A⇒ ∆

Γ,MMA⇒ ∆
(MML)

Γ, [t]A⇒ ∆

Γ,MLA⇒ ∆
(MLL)

Γ, [m]A⇒ ∆

Γ,MIA⇒ ∆
(MIL)

Γ, [f]A⇒ ∆

Γ,L¬A⇒ ∆
(L¬L)

Γ, [t]A∨[m]A⇒ ∆

Γ,LMA⇒ ∆
(LML)

Γ, [t]A⇒ ∆

Γ,LLA⇒ ∆
(LLL)

Γ, [m]A⇒ ∆

Γ,LIA⇒ ∆
(LIL)

Γ, [m]A⇒ ∆

Γ, I¬A⇒ ∆
(I¬L)

Γ, IMA⇒ ∆
(IML)

Γ, ILA⇒ ∆
(ILL)

Γ, IIA⇒ ∆
(IIL)

• The deduction rules for modalities and unary logical
connectives:

Γ, [f]A⇒ ∆

Γ, [t]¬A⇒ ∆
([t]¬L)

Γ, [t]A∨[m]⇒ ∆

Γ, [t]MA⇒ ∆
([t]ML)

Γ, [t]A⇒ ∆

Γ, [t]LA⇒ ∆
([t]LL)

Γ, [m]A⇒ ∆

Γ, [t]IA⇒ ∆
([t]IL)

Γ, [m]A⇒ ∆

Γ, [m]¬A⇒ ∆
([m]¬L)

Γ, [t]A⇒ ∆

Γ, [f]¬A⇒ ∆
([f]¬L)

Γ, [f]A⇒ ∆

Γ, [f]MA⇒ ∆
([f]ML)

Γ, [m]A∨[f]A⇒ ∆

Γ, [f]LA⇒ ∆
([f]LL)

Γ, [t]A∨[f]A⇒ ∆

Γ, [f]IA⇒ ∆
([f]IL)

and

Γ, [f]A⇒ ∆

Γ,¬[t]A⇒ ∆
(¬[t]L)

Γ, [t]A⇒ ∆

Γ,¬[m]A⇒ ∆
(¬[m]L)
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Γ, [m]A⇒ ∆

Γ,¬[f]A⇒ ∆
(¬[f]L)

Γ, [t]A∨[f]A⇒ ∆

Γ,M[t]A⇒ ∆
(M[t]L)

Γ, [m]A∨[f]A⇒ ∆

Γ,M[m]A⇒ ∆
(M[m]L)

Γ, [t]A∨[f]A⇒ ∆

Γ,M[f]A⇒ ∆
(M[f]L)

Γ, [t]A⇒ ∆

Γ,L[t]A⇒ ∆
(L[t]L)

Γ, [m]A⇒ ∆

Γ,L[m]A⇒ ∆
(L[m]L)

Γ, [f]A⇒ ∆

Γ,L[f]A⇒ ∆
(L[f]L)

Γ, [m]A⇒ ∆

Γ, I[t]A⇒ ∆
(I[t]L)

Γ, [f]A⇒ ∆

Γ, I[m]A⇒ ∆
(I[m]L)

Γ, [t]A⇒ ∆

Γ, I[f]A⇒ ∆
(I[f]L)

• The deduction rules for binary logical connectives:

Γ, A,B ⇒ ∆

Γ, A ∧B ⇒ ∆
(∧L)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆
(∧R)

Γ, A⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
(∨L)

Γ⇒ A,B,∆

Γ⇒ A ∨B,∆
(∨R)

Γ, A,B ⇒ ∆ Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [m]B

⇒ ∆

Γ, [f]A, [t]B ⇒ ∆ Γ, [f]A, [m]B

⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ, A ≺ B ⇒ ∆

(≺L)

Γ⇒ A∧B, [m]A∧[t]B, [m]A∧[m]B,

[f]A∧[t]B, [f]A∧[m]B, [f]A∧[f]B,∆

Γ⇒ A ≺ B,∆
(≺R)

Γ, A,B ⇒ ∆ Γ, [m]A, [m]B ⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ, A ≡ B ⇒ ∆
(≡L)

Γ⇒ A∧B, [m]A∧[m]B, [f]A∧[f]B,∆

Γ⇒ A ≡ B,∆
(≡R)

• The deduction rules for modalities and binary logical
connectives:

� [t] + �: the same as the ones for logical connectives.

� [m] + �:

Γ, [t]A, [m]B ⇒ ∆ Γ2, [m]A, [t]B

⇒ ∆ Γ, [m]A, [m]B ⇒ ∆

Γ, [m](A ∧B)⇒ ∆
([m]∧L)

Γ⇒ [t]A∧[m]B, [m]A∧[t]B, [m]A∧[m]B,∆

Γ⇒ [m](A ∧B),∆
([m]∧R)

Γ, [m]A, [m]B ⇒ ∆ Γ, [m]A, [f]B

⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ, [m](A ∨B)⇒ ∆
([m]∨L)

Γ⇒ [m]A∧[m]B, [m]A∧[f]B, [f]A∧[m]B,∆

Γ⇒ [m](A ∨B),∆
([m]∨R)

Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [f]B ⇒ ∆

Γ, [m](A ≺ B)⇒ ∆
([m] ≺L)

Γ⇒ [t]A∧[m]B, [m]A∧[f]B,∆

Γ⇒ [m](A ≺ B),∆
([m] ≺R)

Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [f]B

⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ, [m](A ≡ B)⇒ ∆
([m] ≡L)

Γ⇒ [t]A∧[m]B, [m]A∧[t]B, [m]A

∧[f]B, [f]A∧[m]B,∆

Γ⇒ [m](A ≡ B),∆
([m] ≡R)

� [f] + �:

Γ, [f]A⇒ ∆ Γ, [f]B ⇒ ∆

Γ, [f](A ∧B)⇒ ∆
([f]∧L)

Γ⇒ [f]A, [f]B,∆

Γ⇒ [f](A ∧B),∆
([f]∧R)

Γ, [f]A, [f]B ⇒ ∆

Γ, [f](A ∨B)⇒ ∆
([f]∨L)

Γ⇒ [f]A∧[f]B,∆

Γ⇒ [f](A ∨B),∆
([f]∨R)

Γ, [t]A, [f]B ⇒ ∆

Γ, [f](A ≺ B)⇒ ∆
([f] ≺L)

Γ⇒ [t]A∧[f]B,∆

Γ⇒ [f](A ≺ B),∆
([f] ≺R)

Γ, [t]A, [f]B ⇒ ∆ Γ, [f]A, [t]B ⇒ ∆

Γ, [f](A ≡ B)⇒ ∆
([f] ≡L)

Γ⇒ [t]A∧[f]B, [f]A∧[t]B,∆

Γ⇒ [f](A ≡ B),∆
([f] ≡R)

• The deduction rules for unary and binary logical con-
nectives:

� ¬+ •: same as f + �.
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�M + •:

Γ, [t]A, [t]B ⇒ ∆ Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [t]B

⇒ ∆ Γ, [m]A, [m]B ⇒ ∆

Γ,M(A ∧B)⇒ ∆
(M∧L)

Γ⇒ [t]A∧[t]B, [t]A∧[m]B, [m]A∧[t]B,

[m]A∧[m]B,∆

Γ⇒M(A ∧B),∆
(M∧R)

Γ, [t]A, [t]B ⇒ ∆ Γ, [t]A, [m]B

⇒ ∆ Γ, [t]A, [f]B ⇒ ∆

Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [m]B

⇒ ∆ Γ, [m]A, [f]B ⇒ ∆

Γ, [f]A, [t]B ⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ,M(A ∨B)⇒ ∆
(M∨L)

Γ⇒ [t]A∧[t]B, [t]A∧[m]B, [t]A∧[f]B,

[m]A∧[t]B,

[m]A∧[m]B, [m]A∧[f]B, [f]A∧[t]B, [f]A∧[m]B,∆

Γ⇒M(A ∨B),∆
(M∨R)

Γ, [t]A, [t]B ⇒ ∆ Γ, [t]A, [m]B

⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [m]B

⇒ ∆ Γ, [m]A, [f]B ⇒ ∆

Γ, [f]A, [t]B ⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ,M(A ≺ B)⇒ ∆
(M ≺L)

Γ⇒ [t]A∧[t]B, [t]A∧[m]B, [f]A∧[f]B,

[m]A∧[t]B,

[m]A∧[m]B, [m]A∧[f]B, [f]A∧[t]B, [f]A∧[m]B,∆

Γ⇒M(A ≺ B),∆
(M ≺R)

Γ, [t]A, [t]B ⇒ ∆ Γ, [t]A, [m]B

⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [m]B

⇒ ∆ Γ, [m]A, [f]B ⇒ ∆

Γ, [f]A, [m]B ⇒ ∆

Γ,M(A ≡ B)⇒ ∆
(M ≡L)

Γ⇒ [t]A∧[t]B, [t]A∧[m]B, [f]A∧[f]B,

[m]A∧[t]B,

[m]A∧[m]B, [m]A∧[f]B, [f]A∧[m]B,∆

Γ⇒M(A ≡ B),∆
(M ≡R)

� L + •:

Γ, [t]A, [t]B ⇒ ∆

Γ,L(A ∧B)⇒ ∆
(L∧L)

Γ⇒ [t]A∧[t]B,∆

Γ⇒ L(A ∧B),∆
(L∧R)

Γ, [t]A⇒ ∆ Γ, [t]B ⇒ ∆

Γ,L(A ∨B)⇒ ∆
(L∨L)

Γ⇒ [t]A, [t]B,∆

Γ⇒ L(A ∨B),∆
(L∨R)

Γ, [t]A, [t]B ⇒ ∆ Γ, [m]A, [t]B

⇒ ∆ Γ, [m]A, [m]B ⇒ ∆

Γ, [f]A, [t]B ⇒ ∆ Γ, [f]A, [m]B

⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ,L(A ≺ B)⇒ ∆
(L ≺L)

Γ⇒ [t]A∧[t]B, [m]A∧[t]B,

[m]A∧[m]B, [f]A∧[t]B, [f]A∧[m]B,

[f]A∧[f]B,∆

Γ⇒ L(A ≺ B),∆
(L ≺R)

Γ, [t]A, [t]B ⇒ ∆ Γ, [m]A, [m]B

⇒ ∆ Γ, [f]A, [f]B ⇒ ∆

Γ,L(A ≡ B)⇒ ∆
(L ≡L)

Γ⇒ [t]A∧[t]B, [m]A∧[m]B, [f]A∧[f]B,∆

Γ⇒M(A ≡ B),∆
(M ≡R)

� I + ∧/∨:

Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [t]B

⇒ ∆ Γ, [m]A, [m]B ⇒ ∆

Γ, I(A ∧B)⇒ ∆
(I∧L)

Γ⇒ [t]A∧[m]B, [m]A∧[t]B, [m]A∧[m]B,∆

Γ⇒ I(A ∧B),∆
(I∧R)

Γ, [m]A, [m]B ⇒ ∆ Γ, [m]A, [f]B

⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ, I(A ∨B)⇒ ∆
(I∨L)

Γ⇒ [m]A∧[m]B, [m]A∧[f]B, [f]A∧[m]B,∆

Γ⇒ I(A ∨B),∆
(I∨R)

Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [f]B ⇒ ∆

Γ, I(A ≺ B)⇒ ∆
(I ≺L)

Γ⇒ [t]A∧[m]B, [m]A∧[f]B,∆

Γ⇒ I(A ≺ B),∆
(I ≺R)

Γ, [t]A, [m]B ⇒ ∆ Γ, [m]A, [t]B ⇒ ∆ Γ, [m]A, [f]B

⇒ ∆ Γ, [f]A, [m]B ⇒ ∆

Γ, I(A ≡ B)⇒ ∆
(I ≡L)
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Γ⇒ [t]A∧[m]B, [m]A∧[t]B, [m]A∧[f]B,

[f]A∧[m]B,∆

Γ⇒ I(A ≡ B),∆
(I ≡R)

• The deduction rules for ∧/∨.

Γ, A⇒ ∆

Γ, A∧B ⇒ ∆
(∧L)1

Γ1 ⇒ A,∆1 Γ2 ⇒ B,∆2

Γ1,Γ2 ⇒ A∧B,∆1,∆2
(∧R)

Γ, B ⇒ ∆

Γ, A∧B ⇒ ∆
(∧L)2

Γ1, A⇒ ∆1 Γ2, B ⇒ ∆2

Γ1,Γ2, A∨B ⇒ ∆1,∆2
(∨L)

Γ⇒ A,∆

Γ⇒ A∨B,∆
(∨R)1

Γ⇒ B,∆

Γ⇒ A∨B,∆
(∨R)2

Definition 3.2. Γ `Ł3
A if there is a sequence Γ1 ⇒

A1, ...,Γn ⇒ An such that Γn ⇒ An = Γ ⇒ A, and for
each 1 ≤ i ≤ n,Γi ⇒ Ai is deduced from the previous se-
quents by one of the deduction rules.

Theorem 3.3 (The soundness theorem). If Γ `Ł3
A then

|=Ł3
Γ⇒ A.

Proof. We prove that each axiom is valid and each deduction
rule preserves the satisfiability.

To verify the validity of the axioms, assume that for any as-
signment v, v |= Γ, [m]p. Then, v |= [m]p, and so v |= [m]p,∆.

Similarly for other axioms.
To verify that ([m][m]L) preserves the validity, assume that

for any assignment v, v |= Γ, [m]A implies v |= ∆. Because
v |= [m]A implies v |= [m][m]A, for any assignment v, if
v |= Γ, [m][m]A then v |= ∆. Similarly for cases of unary
connectives.

To verify that ([m]∧L) preserves the validity, assume that for
any assignment v,

v |= Γ1, [t]A, [m]B implies v |= ∆1;

v |= Γ2, [m]A, [t]B implies v |= ∆2;

v |= Γ3, [m]A, [m]B implies v |= ∆3.

For any assignment v, assume that v |= Γ1,Γ2,Γ3, [m](A →
B). Then,

(v |= [t]A&v |= [m]B),

or
(v |= [m]A&v |= [t]B),

or
(v |= [m]A&v |= [m]B),

that is, either v |= [t]A, [m]B, or v |= [m]A, [t]B, or v |=

[m]A, [m]B. By the assumption, either v |= Γ1, [t]A, [m]B, or
v |= Γ2, [m]A, [t]B, or v |= Γ3, [m]A, [m]B. By the assumption,
either v |= ∆1, or v |= ∆2, or v |= ∆3, and v |= ∆1,∆2,∆3.

To verify that ([m]∧R) preserves the validity, assume that for
any assignment v, v |= Γ implies v |= [t]A∧[m]B, [m]A∧[t]B,
[m]A∧[m]B, ∆. Then, for any assignment v, assume that v |=
Γ. If v |= ∆ then v |= [m](A ∧ B),∆; otherwise, one of
[t]A∧[m]B, [m]A∧[t]B and [m]A∧[m]B is satisfied by v, and by
the definition of the truth-value of [m](A ∧ B), v |= [m](A ∧
B),∆.

Similarly for other cases. �

4. The completeness theorem

Theorem 4.1 (The completeness theorem). If |=Ł3
Γ⇒ A

then Γ `Ł3
A.

Proof. Let δ = Γ ⇒ A. Define a tree, called the reduction
tree for δ, denoted by T (δ), from which we can obtain either a
proof of δ or a show of the nonvalidity of δ.

This reduction tree T (δ) for δ contains a sequent at each
node, and is constructed in stages as follows.

Stage 0: T0(δ) = {δ}.
Stage k(k > 0) : Tk(δ) is defined by cases.
Case 0. If Γ⇒ ∆ is an axiom, write nothing above Γ⇒ ∆.

Case 1. Every topmost sequent Γ ⇒ ∆ in Tk−1(δ) is an
axiom. Then, stop.

Case 2. Not Case 1. Tk(δ) is defined as follows. Let Γ⇒ ∆

be any topmost sequent of the tree which has been defined by
stage k − 1.

Subcase ([t][t]L). Let [t][t]A1, ..., [t][t]An be all the for-
mulas in Γ whose outermost logical symbol is [t][t], and to
which no reduction has been applied in previous stages. Then,
write down

Γ, [t]A1, ..., [t]An ⇒ ∆

above Γ ⇒ ∆. We say that a ([t][t]L) reduction has been
applied to [t][t]A1, ..., [t][t]An.

Subcase ([t][t]R). Let [t][t]A1, ..., [t][t]An be all the for-
mulas in ∆ whose outermost logical symbol is [t][t], and to
which no reduction has been applied in previous stages. Then,
write down

Γ⇒ [t]A1, ..., [t]An,∆

above Γ ⇒ ∆. We say that a ([t][t]R) reduction has been
applied to [t][t]A1, ..., [t][t]An.

Subcase (MLL). Let MLA1, ...,MLAn be all the formulas
in Γ whose outermost logical symbol is ML, and to which no
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reduction has been applied in previous stages. Then, write down

Γ, [t]A1, ..., [t]An ⇒ ∆

above Γ ⇒ ∆. We say that a (MLL) reduction has been ap-
plied to MLA1, ...,MLAn.

Subcase (MLR). Let MLA1, ...,MLAn be all the formulas
in ∆ whose outermost logical symbol is ML, and to which no
reduction has been applied in previous stages. Then, write down

Γ⇒ [t]A1, ..., [t]An,∆

above Γ ⇒ ∆. We say that a (MLR) reduction has been ap-
plied to MLA1, ...,MLAn.

Subcase (L[t]L). Let L[t]A1, ...,L[t]An be all the formulas
in Γ whose outermost logical symbol is L[t], and to which no
reduction has been applied in previous stages. Then, write down

Γ, [t]A1, ..., [t]An ⇒ ∆

above Γ⇒ ∆.We say that a (L[t]L) reduction has been applied
to L[t]A1, ..., L[t]An.

Subcase (L[t]R). Let L[t]A1, ...,L[t]An be all the formulas
in ∆ whose outermost logical symbol is L[t], and to which no
reduction has been applied in previous stages. Then, write down

Γ⇒ [t]A1, ..., [t]An,∆

above Γ ⇒ ∆. We say that a (L[t]R) reduction has been ap-
plied to L[t]A1, ..., L[t]An.

Similar for other cases of unary connectives.

Subcase ([m]∧L). Let [m](A1 ∧B1), ..., [m](An ∧Bn) be all
the statements in Γ whose outermost logical symbol is [m]∧, and
to which no reduction has been applied in previous stages by
any ([m]∧L). Then, for each partition {I1, I2, I3} of {1, ..., n},
write down

Γ, [t]Ai : i ∈ I1, [m]Bi : i ∈ I1 ∪ I3, [m]Ai : i ∈ I2 ∪ I3,

[t]Bi : i ∈ I2 ⇒ ∆

above Γ⇒ ∆.We say that a ([m]∧L) reduction has been applied
to [m](A1 ∧B1), ..., [m](An ∧Bn).

Subcase ([m]∧R). Let [m](A1 ∧B1), ..., [m](An ∧Bn) be all
the statements in ∆ whose outermost logical symbol is [m]∧,
and to which no reduction has been applied in previous stages

by any ([m]∧R). Then, write down

Γ⇒ [t]A1∧[m]B1, [m]A1∧[t]B1, [m]A1∧[m]B1, ...,

[t]An∧[m]Bn, [m]An∧[t]Bn, [m]An∧[m]Bn,∆

above Γ ⇒ ∆. We say that a ([m]∧R) reduction has been ap-
plied to [m](A1 ∧B1), ..., [m](An ∧Bn).

Subcase ([m]∨L). Let [m](A1 ∨B1), ..., [m](An ∨Bn) be all
the statements in Γ whose outermost logical symbol is [m]∨, and
to which no reduction has been applied in previous stages by
any ([m]∨L). Then, for each partition {I1, I2, I3} of {1, ..., n},
write down

Γ, [m]Ai : i ∈ I1 ∪ I2, [m]Bi : i ∈ I1 ∪ I3,

[f]Ai : i ∈ I3, [f]Bi : i ∈ I2 ⇒ ∆

above Γ⇒ ∆.We say that a ([m]∨L) reduction has been applied
to [m](A1 ∨B1), ..., [m](An ∨Bn).

Subcase ([m]∨R). Let [m](A1 ∨B1), ..., [m](An ∨Bn) be all
the statements in ∆ whose outermost logical symbol is [m]∨,
and to which no reduction has been applied in previous stages
by any ([m]∨R). Then, write down

Γ⇒ [m]A1∧[m]B1, [m]A1∧[f]B1, [f]A1∧[m]B1, ...,

[m]An∧[m]Bn, [m]An∧[f]Bn, [f]An∧[m]Bn,∆

above Γ ⇒ ∆. We say that a ([m]∨R) reduction has been ap-
plied to [m](A1 ∨B1), ..., [m](An ∨Bn).

Subcase (M∧L). Let M(A1 ∧B1), ...,M(An ∧Bn) be all
the statements in Γ whose outermost logical symbol is M∧,
and to which no reduction has been applied in previous stages
by any (M∧L). Then, for each partition {I1, I2, I3, I4} of
{1, ..., n}, write down

Γ, [t]Ai : i ∈ I1 ∪ I2, [t]Bi : i ∈ I1 ∪ I3,

[m]Ai : i ∈ I3 ∪ I4, [m]Bi : i ∈ I2 ∪ I4 ⇒ ∆

above Γ⇒ ∆.We say that a (M∧L) reduction has been applied
to M(A1 ∧B1), ...,M(An ∧Bn).

Subcase (M∧R). Let M(A1 ∧B1), ...,M(An ∧Bn) be all
the statements in ∆ whose outermost logical symbol is M∧,
and to which no reduction has been applied in previous stages
by any (M∧R). Then, write down

Γ⇒ [t]A1∧[t]B1, [t]A1∧[m]B1, [m]A1∧[t]B1,

[m]A1∧[m]B1,

..., [t]An∧[t]Bn, [t]An∧[m]Bn, [m]An∧[t]Bn,
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[m]An∧[m]Bn,∆

above Γ ⇒ ∆. We say that a (M∧R) reduction has been ap-
plied to M(A1 ∧B1), ...,M(An ∧Bn).

Subcase (M∨L). Let M(A1 ∨B1), ...,M(An ∨Bn) be all
the statements in Γ whose outermost logical symbol is M∨, and
to which no reduction has been applied in previous stages by
any (M∨L). Then, for each partition {I1, ..., I8} of {1, ..., n},
write down

Γ, [t]Ai : i ∈ I1 ∪ I2 ∪ I3, [t]Bi : i ∈ I1 ∪ I4 ∪ I7,

[m]Ai : i ∈ I4 ∪ I5 ∪ I6, [m]Bi : i ∈ I2 ∪ I4 ∪ I8,

[f]Ai : i ∈ I7 ∪ I8, [f]Bi : i ∈ I3 ∪ I6 ⇒ ∆

above Γ⇒ ∆.We say that a (M∨L) reduction has been applied
to M(A1 ∨B1), ...,M(An ∨Bn).

Subcase (M∨R). Let M(A1 ∨B1), ...,M(An ∨Bn) be all
the statements in ∆ whose outermost logical symbol is M∨,
and to which no reduction has been applied in previous stages
by any (M∨R). Then, write down

Γ⇒ [t]A1∧[t]B1, [t]A1∧[m]B1, [t]A1∧[f]B1,

[m]A1∧[t]B1, [m]A1∧[m]B1,

[m]A1∧[f]B1, [f]A1∧[t]B1, [f]A1∧[m]B1, ...,

[t]An∧[t]Bn, [t]An∧[m]Bn, [t]An∧[f]Bn,

[m]An∧[t]Bn, [m]An∧[m]Bn,

[m]An∧[f]Bn, [f]An∧[t]Bn, [f]An∧[m]Bn,∆

above Γ ⇒ ∆. We say that a (M∨R) reduction has been ap-
plied to M(A1 ∨B1), ...,M(An ∨Bn).

Subcase (∧L). Let (A1∧B1), ..., (An∧Bn) be all the state-
ments in Γ whose outermost logical symbol is ∧, and to which
no reduction has been applied in previous stages by any (∧L).
Then, write down

Γ, A1, B1, ..., An, Bn ⇒ ∆

above Γ⇒ ∆. We say that a (∧L) reduction has been applied
to (A1∧B1), ..., (An∧Bn).

Subcase (∧R). Let (A1∧B1), ..., (An∧Bn) be all the state-
ments in ∆ whose outermost logical symbol is ∧, and to which
no reduction has been applied in previous stages by any (∧R).
Then, write down

Γ⇒ C1, ..., Cn,∆

above Γ ⇒ ∆, where Ci ∈ {Ai, Bi}. We say that a (∧R)

reduction has been applied to (A1∧B1), ..., (An∧Bn).

Subcase (∨L). Let (A1∨B1), ..., (An∨Bn) be all the state-
ments in Γ whose outermost logical symbol is ∨, and to which
no reduction has been applied in previous stages by any (∨L).
Then, write down

Γ, C1, ..., Cn ⇒ ∆

above Γ ⇒ ∆, where Ci ∈ {Ai, Bi}. We say that a (∨L)

reduction has been applied to (A1∨B1), ..., (An∨Bn).

Subcase (∨R). Let (A1∨B1), ..., (An∨Bn) be all the state-
ments in ∆ whose outermost logical symbol is ∨, and to which
no reduction has been applied in previous stages by any (∨R).
Then, write down

Γ⇒ A1, B1, ..., An, Bn,∆

above Γ⇒ ∆. We say that a (∨R) reduction has been applied
to (A1∨B1), ..., (An∨Bn).

Similar for other subcases.
So the collection of those sequents which are obtained by

the above reduction process, together with the partial order
obtained by this process, is the reduction tree for δ, denoted by
T (δ).

A sequence δ0, ... of sequents in T (δ) is a branch if δ0 = δ,

and for each i, δi+1 is immediately above δi.
Given a sequent δ, if each branch of T (δ) is ended with a

sequent containing an axiom, then it is a routine to construct a
proof of δ.

Otherwise, there is a branch σ = δ1, ..., δn of T (δ) such that
there is no rule applicable for δn and δn = Γn ⇒ ∆n is not an
axiom.

Let
∪Γ = {ϕ : ϕ ∈ Γi,Γi ⇒ ∆i ∈ σ},
∪∆ = {ϕ : ϕ ∈ ∆i,Γi ⇒ ∆i ∈ σ}.

We define an assignment in which every formula ϕ ∈ ∪Γ is
true and every formula in ϕ ∈ ∪∆ is not.

Define v such that for any propositional variable p,

v(p) = t iff [t]p ∈ ∪Γ;

v(p) = m iff [m]p ∈ ∪Γ;

v(p) = f iff [f]p ∈ ∪Γ.

By the induction on the structure of statement A, we prove
that v |= A if A ∈ ∪Γ and v 6|= A if A ∈ ∪∆.

Case A = [m](A1 ∧ A2) ∈ ∪Γ. Let β be the least-length
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segment of σ such that β = Γ′, [m](A1 ∧ A2) ⇒ ∆′ for some
Γ′ and ∆′. Then, there is a segment γ of σ such that β is a
segment of γ and γ is one of the following forms:

Γ′, [t]A1, [m]A2 ⇒ ∆′,

Γ′, [m]A1, [t]A2 ⇒ ∆′,

Γ, [m]A1, [m]A2 → ∆′,

say γ = Γ′, [m]A1, [m]A2 ⇒ ∆′. By induction assumption,
v |= Γ′, [m]A1, [m]A2 and v 6|= ∆′. Then, by the definition of
satisfaction, v |= Γ′, [m](A1 ∧A2) and v 6|= ∆′.

Case A = [m](A1∧A2) ∈ ∪∆. Let β be the least-length seg-
ment of σ such that β = Γ′ ⇒ [m](A1∧A2),∆′. Then, there are
segments γ1, γ2, γ3 of σ such that β is a segment of γ1, γ2, γ3
and γ1 = Γ′ ⇒ [t]A∧[m]B,∆′; γ2 = Γ′ ⇒ [m]A∧[t]B,∆′

and γ3 = Γ′ ⇒ [m]A∧[m]B,∆′. By the induction assumption,
v |= Γ′ and v 6|= [t]A∧[m]B,∆′; v 6|= [m]A∧[t]B,∆′; v 6|=
[m]A∧[m]B,∆′, i.e., v 6|= [m](A1 ∧A2),∆′.

Similarly for other cases.
This completes the proof. �

5. Conclusions

In this paper we gave a modalized Łukasiewicz three-valued
propositional logic and a Gentzen deduction system was con-
structed such that the soundness theorem and the completeness
theorem hold in Łukasiewicz three-valued semantics of the
modalized propositional logic.

In practical applications, we use the traditional fuzzy logic
in which only two truth-values t and f are considered in the
deduction, even though in semantics, a formula can have any
values as the truth-values. In the Gentzen deduction system
given in this paper, each truth-value contributes to the deduction,
which makes the system a little clumsy. As a system which can
be implemented in computer, we hope the Gentzen deduction
system is used in practice in near future.

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgements

This work was supported by the National Science Foundation of
China (under grant Nos. 91224006 and 61173063) and the Min-
istry of Science and Technology (under grant No.201303107).

References

[1] A. Avron, “Natural 3-valued logics: characterization and-
proof theory,” Journal of Symbolic Logic, vol. 56, no. 1,
pp. 276-294, 1991. http://dx.doi.org/10.2307/2274919

[2] A. Avron, “Gentzen-type systems, resolution and
tableaux,” Journal of Automated Reasoning, vol. 10, no. 2,
pp. 265-281,1993. http://dx.doi.org/10.1007/BF00881838

[3] D. A. Bochvar and M. Bergmann, “On a three-valued
logical calculus and itsapplication to the analysis of the
paradoxes of the classicalextended functional calculus,”
History and Philosophy ofLogic, vol. 2, no. 1-2, pp. 87-
112, 1981. http://dx.doi.org/10.1080/01445348108837023

[4] M. Fitting, “Many-valued modal logics II,” Fundamen-
taInformaticae, vol. 17, no. 1-2, pp. 55-73, 1992.

[5] S. Gottwald, A Treatise on Many-Valued Logics. Baldock:
ResearchStudies Press, 2001.

[6] S. Gottwald, “Many-Valued Logic,” Available http://plato.
stanford.edu/entries/logic-manyvalued/

[7] R.Hahnle, “Advanced many-valued logics,” in Handbook
of Philosophical Logic, D. M. Gabbay and F. Guenthner,
Eds. Dordrecht: Springer, 2001, pp. 297-395. http://dx.
doi.org/10.1007/978-94-017-0452-6 5

[8] S. C. Kleene, “On notation for ordinal numbers,” Journal
of Symbolic Logic, vol. 3, no. 4, pp. 150-155,1938. http:
//dx.doi.org/10.2307/2267778

[9] W. Li, Mathematical Logic: Foundations for Information-
Science. Basel: BirkhauserVerlag AG, 2010.

[10] J. Lukasiewicz, “O logicetrojwartosciowej [On three-
valued logic],” Ruch filozoficzny, vol. 5, pp. 170-171,
1920.

[11] J. Lukasiewicz, “Selected Works,” in Studies in Logic
and the Foundations of Mathematics,L. Borkowski, Ed.
Amsterdam:North-Holland and Warsaw, 1970.

[12] E. L. Post, “Determination of all closed systems of truthta-
bles,” Bulletin American Mathematical Society, vol. 26,
pp. 437, 1920.

[13] E. L. Post, “Introduction to a general theory of elemen-
tarypropositions,” American Journal of Mathematics, vol.
43, no. 3, pp. 163-185, 1921. http://dx.doi.org/10.2307/
2370324

155 | Cao Cungen and Sui Yuefei

http://dx.doi.org/10.2307/2274919
http://dx.doi.org/10.1007/BF00881838
http://dx.doi.org/10.1080/01445348108837023
http://plato.stanford.edu/entries/logic-manyvalued/
http://plato.stanford.edu/entries/logic-manyvalued/
http://dx.doi.org/10.1007/978-94-017-0452-6_5
http://dx.doi.org/10.1007/978-94-017-0452-6_5
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.2307/2370324
http://dx.doi.org/10.2307/2370324


http://dx.doi.org/10.5391/IJFIS.2016.16.3.147

[14] A. Urquhart,“Basic many-valued logic,” in Handbook
of philosophical logic (vol. 2), D. M. Gabbay and F.
Guenthner, Eds. Dordrecht: Springer, 2001, pp. 249-295.
http://dx.doi.org/10.1007/978-94-017-0452-6 4

[15] W. Zhu, “Independence issues of the propositional connec-
tivesin medium logic systems MP and MP,” in AFriendly
Collection of Mathematical Papers I. Changchun: Jilin
University Press, 1990.

[16] J. Zhu, X. Xiao, and W. Zhu, “A survey of the develop-
mentof medium logic calculus system and the research
ofits semantics,” in A Friendly Collection of Mathematical
Papers I. Changchun: Jilin University Press, 1990.

[17] W. Zhu and X. Xiao, An Introduction to Foundations
ofMathematics. Nanjing: Nanjing University Press, 1996.

Cungen Cao received his M.S. and Ph.D. de-
gree in software from the Institute of Math-
ematics, Chinese Academy of Sciences in
1989 and 1993 respectively. He is a full-time
professor of ICT, CAS, since 2000. He is

leading a research group of large-scale knowledge engineering
and knowledge-intensive applications.

Yuefei Sui is a Professor in the Chinese Academy
of Sciences (ICT), Chinese Academy of Sci-
ences. His main interests include knowledge
representation, applied logic and the theory
of computability.

www.ijfis.org The Sound and Complete Gentzen Deduction System for the Modalized Łukasiewicz Three-Valued Logic | 156

http://dx.doi.org/10.1007/978-94-017-0452-6_4

