References
- Samovar, L., et al., "Communication between cultures". 2015: Nelson Education.
- Gil de Zuniga, H., L. Molyneux, and P. Zheng, "Social media, political expression, and political participation: Panel analysis of lagged and concurrent relationships". Journal of Communication, 64(4):pp. 612-634, 2014. http://dx.doi.org/10.1111/jcom.12103
- Liu, B., "Sentiment Analysis and Subjectivity". Handbook of natural language processing, 2010. 2:pp. 627-666.
- Jimenez-Zafra, S.M., et al., "Combining resources to improve unsupervised sentiment analysis at aspect-level". Journal of Information Science, 2015. http://dx.doi.org/10.1177/0165551515593686
- Dave, S. and H. Diwanji, "Trend Analysis in Social Networking using Opinion Mining A Survey". 2015.
- Pang, B. and L. Lee, "Opinion Mining and Sentiment Analysis". Found. Trends Inf. Retr., 2(1-2), pp. 1-135, 2008. http://dx.doi.org/10.1561/1500000011
- Osimo, D. and F. Mureddu, "Research challenge on opinion mining and sentiment analysis". Universite de Paris-Sud, Laboratoire LIMSI-CNRS, Batiment, 508, 2012.
- Liu, B., "Web Data Mining", Springer, 2006.
- Kim, S.-M. and E. Hovy. "Determining the sentiment of opinions". in Proceedings of the 20th international conference on Computational Linguistics, Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1220355.1220555
- Yu, H. and V. Hatzivassiloglou. "Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences". in Proceedings of the 2003 conference on Empirical methods in natural language processing, Association for Computational Linguistics, 2003. http://dx.doi.org/10.3115/1119355.1119372
- Gezici, G., et al., "Sentiment Analysis Using Domain-Adaptation and Sentence-Based Analysis", in Advances in Social Media Analysis, Springer, pp. 45-64, 2015. http://dx.doi.org/10.1007/978-3-319-18458-6_3
- Pang, B., L. Lee, and S. Vaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques". in Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, Association for Computational Linguistics, 2002. http://dx.doi.org/10.3115/1118693.1118704
- Tang, D., "Sentiment-Specific Representation Learning for Document-Level Sentiment Analysis", in Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, ACM: Shanghai, China. pp. 447-452, 2015. http://dx.doi.org/10.1145/2684822.2697035
- Hu, M. and B. Liu. "Mining and summarizing customer reviews". in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 2004: ACM. http://dx.doi.org/10.1145/1014052.1014073
- Sheng, H., et al. "Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining". in Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on. 2012. http://dx.doi.org/10.1109/ICDMW.2012.53
- Patra, B.G., et al., "Ju_cse: A conditional random field (crf) based approach to aspect based sentiment analysis". SemEval 2014, pp. 370, 2014.
- Samha, A.K., Y. Li, and J. Zhang, "Aspect-based opinion mining from product reviews using conditional random fields", 2015.
- Rohrdantz, C., et al., "Feature-based visual sentiment analysis of text document streams". ACM Transactions on Intelligent Systems and Technology (TIST), 3(2), pp. 26, 2012. http://dx.doi.org/10.1145/2089094.2089102
- Saha, S. and A. Ekbal, "Combining Multiple Classifier using Voted based Classifier Ensemble Technique for Named Entity Recognition". Data & Knowledge Engineering, 85, pp. 15-39, 2013. http://dx.doi.org/10.1016/j.datak.2012.06.003
- Rocktaschel, T., M. Weidlich, and U. Leser, "ChemSpot: a hybrid system for chemical named entity recognition", Bioinformatics, 28(12), pp. 1633-1640, 2012. http://dx.doi.org/10.1093/bioinformatics/bts183
- Huang, F., et al., "Learning representations for weakly supervised natural language processing tasks", Computational Linguistics, 40(1), pp. 85-120, 2014. http://dx.doi.org/10.1162/COLI_a_00167
- Tachioka, Y., et al., "Discriminative methods for noise robust speech recognition: A CHiME challenge benchmark", Proc. CHiME, pp. 19-24, 2013.
- Farabet, C., et al., "Learning hierarchical features for scene labeling", Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8), pp. 1915-1929, 2013. http://dx.doi.org/10.1109/TPAMI.2012.231
- Lu, W., et al., "CRF-TM: A Conditional Random Field Method for Predicting Transmembrane Topology", in Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques, Springer, pp. 529-537, 2015. http://dx.doi.org/10.1007/978-3-319-23862-3_52
- Lukov, L., et al., "Protein Secondary Structure Prediction with Conditional Random Fields", School of Information Technologies, University of Sydney, 2010.
- Wang, L. and U.H. Sauer, "OnD-CRF: predicting order and disorder in proteins conditional random fields", Bioinformatics, 24(11), pp. 1401-1402, 2008. https://doi.org/10.1093/bioinformatics/btn132
- Hamdan, H., P. Bellot, and F. Bechet, "Lsislif: CRF and Logistic Regression for Opinion Target Extraction and Sentiment Polarity Analysis", 2015. http://dx.doi.org/10.1093/bioinformatics/btn132
- Wang, C., et al. "Opinion Mining Research on Chinese Micro-blog". in First International Conference on Information Science and Electronic Technology (ISET 2015), Atlantis Press, 2015.
- Yongmei, S. and H. Hua, "Research on Domain-independent Opinion Target Extraction", International Journal of Hybrid Information Technology, 8(1), pp. 237-246, 2015. https://doi.org/10.14257/ijhit.2015.8.1.21
- Zhou, X., X. Wan, and J. Xiao. "Cross-Language Opinion Target Extraction in Review Texts", in Data Mining (ICDM), 2012 IEEE 12th International Conference on. 2012. http://dx.doi.org/10.1109/ICDM.2012.32
- Jakob, N. and I. Gurevych. "Extracting opinion targets in a single-and cross-domain setting with conditional random fields". in Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2010.
- Lafferty, J., A. McCallum, and F.C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data", 2001.
- Wallach, H.M., "Conditional random fields: An introduction", Technical Reports (CIS), pp. 22, 2004.
- Carstairs-McCarthy, A., "An introduction to English morphology: words and their structure", Edinburgh University Press, 2002.
- Dingare, S., et al., "A system for identifying named entities in biomedical text: How results from two evaluations reflect on both the system and the evaluations". Comparative and Functional Genomics, 6(1-2), pp. 77-85, 2005. https://doi.org/10.1002/cfg.457
- Manning, C.D., et al., "Introduction to Information Retrieval", Cambridge University Press, 496, 2008.
- Perlmutter, D.M., "Deep and Surface Structure Constraints in Syntax", Language, 49(3), pp. 697-701, 1973. https://doi.org/10.2307/412360
- Yi, J., et al. "Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques", in Data Mining, ICDM 2003. Third IEEE International Conference on. 2003 IEEE. http://dx.doi.org/10.1109/ICDM.2003.1250949
- Asch, V.V. and W. Daelemans, "Prepositional Phrase Attachment in Shallow Parsing", International Conference RANLP 2009, pp. 12-17, 2009.
- Shi, H., "Research on Fine-grained Sentiment Analysis", Soochow University, pp. 46-49, 2013.
- Del Corro, L. and R. Gemulla. "ClausIE: clause-based open information extraction", in Proceedings of the 22nd international conference on World Wide Web, International World Wide Web Conferences Steering Committee, 2013. http://dx.doi.org/10.1145/2488388.2488420
- Kessler, J.S. and N. Nicolov. "Targeting Sentiment Expressions through Supervised Ranking of Linguistic Configurations", in ICWSM. 2009.
- Bechet, F., "Named Entity Recognition", in Spoken Language Understanding, John Wiley & Sons, Ltd. pp. 257-290, 2011. http://dx.doi.org/10.1002/9781119992691.ch10
- Singh, S., et al., "Analysis of Anaphora Resolution System for English Language", International Journal on Information Theory (IJIT), 3(2), 2014.