DOI QR코드

DOI QR Code

Production of Polyclonal Antibody against Grapevine fanleaf virus Movement Protein Expressed in Escherichia coli

  • Received : 2016.02.23
  • Accepted : 2016.05.30
  • Published : 2016.10.01

Abstract

The genomic region of Grapevine fanleaf virus (GFLV) encoding the movement protein (MP) was cloned into pET21a and transformed into Escherichia coli strain BL21 (DE3) to express the protein. Induction was made with a wide range of isopropyl-${\beta}$-D-thiogalactopyranoside (IPTG) concentrations (1, 1.5, and 2 mM) each for duration of 4, 6, or 16 h. However, the highest expression level was achieved with 1 mM IPTG for 4 h. Identity of the expressed protein was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting. The expressed 41 kDa protein was purified under denaturing condition by affinity chromatography, reconfirmed by Western blotting and plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) before being used as a recombinant antigen to raise polyclonal antibodies in rabbits. Purified anti-GFLV MP immunoglobulines (IgGs) and conjugated IgGs detected the expressed MP and GFLV virions in infected grapevines when used in PTA-ELISA, double antibody sandwich-ELISA, and Western blotting. This is the first report on the production of anti-GFLV MP polyclonal antibodies and application for the virus detection.

Keywords

References

  1. Abou-Jawdah, Y., Sobh, H., Cordahi, N., Kawtharani, H., Nemer, G., Maxwell, D. P. and Nakhla, M. K. 2004. Immunodiagnosis of Prune dwarf virus using antiserum produced to its recombinant coat protein. J. Virol. Methods 121:31-38. https://doi.org/10.1016/j.jviromet.2004.05.013
  2. Agrios, G. N. 2004. Plant pathology. 5th ed. Academic Press, Burlington, VT, USA. 922 pp.
  3. Akamatsu, N., Takeda, A., Kishimoto, M., Kaido, M., Okuno, T. and Mise, K. 2007. Phosphorylation and interaction of the movement and coat proteins of brome mosaic virus in infected barley protoplasts. Arch. Virol. 152:2087-2093. https://doi.org/10.1007/s00705-007-1038-6
  4. Andret-Link, P., Laporte, C., Valat, L., Ritzenthaler, C., Demangeat, G., Vigne, E., Laval, V., Pfeiffer, P., Stussi-Garaud, C. and Fuchs, M. 2004. Grapevine fanleaf virus: still a major threat to the grapevine industry. J. Plant Pathol. 86:183-195.
  5. Astier, S., Albouy, J., Maury, Y., Robaglla, C. and Lecoq, H. 2001. Principes of plant virology: genome, pathogenicity, virus ecology. Institut National de la Recherche Agronomique, Paris, France.
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Calegario, R. F., Labate, M. T. V., Peroni, L. A., Stach-Machado, D. R., Andrade, M. O., Freitas-Astua, J., Labate, C. A., Machado, M. A. and Kitajima, E. W. 2012. In vitro expression and antiserum production against the movement protein of Citrus leprosis virus C (CiLV-C). Trop. Plant Pathol. 37: 136-141. https://doi.org/10.1590/S1982-56762012000200006
  8. Cerovska, N., Filigarova, M. and Pecenkova, T. 2006. Production of polyclonal antibodies to a recombinant Potato moptop virus non-structural triple gene block protein 1. J. Phytopathol. 154:422-427. https://doi.org/10.1111/j.1439-0434.2006.01121.x
  9. Cerovska, N., Moravec, T., Plchova, H., Hoffmeisterova, H. and Dedic, P. 2012. Production of polyclonal antibodies to the recombinant Potato virus M (PVM) non-structural triple gene block protein 1 and coat protein. J. Phytopathol. 160:251-254. https://doi.org/10.1111/j.1439-0434.2012.01886.x
  10. Cerovska, N., Moravec, T., Rosecka, P., Dedic, P. and Filigarova, M. 2003. Production of polyclonal antibodies to a recombinant coat protein of Potato mop-top virus. J. Phytopathol. 151:195-200. https://doi.org/10.1046/j.1439-0434.2003.00705.x
  11. Chen, M. H., Sheng, J., Hind, G., Handa, A. K. and Citovsky, V. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19:913-920. https://doi.org/10.1093/emboj/19.5.913
  12. Chung, C. T., Niemela, S. L. and Miller, R. H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U. S. A. 86:2172-2175. https://doi.org/10.1073/pnas.86.7.2172
  13. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-483. https://doi.org/10.1099/0022-1317-34-3-475
  14. Colariccio, A., Lovisolo, O., Boccardo, G., Chagas, C. M., d'Aquilio, M. and Rossetti, V. 2000. Preliminary purification and double stranded RNA analysis of citrus leprosis virus. In: Proceedings of the Fourteenth IOCV Conference, 2000: Other Viruses, pp. 159-163. International Organization of Citrus Virologists (IOCV), Riverside, CA, USA.
  15. Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J. and Beachy, R. N. 1990. Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc. Natl. Acad. Sci. U. S. A. 87:3284-3288. https://doi.org/10.1073/pnas.87.9.3284
  16. Dijkstra, J. and de Jager, C. P. 1998. Practical plant virology: protocols and exercises. Springer-Verlag GmbH, Berlin, Germany.
  17. Fajardo, T. V. M., Barros, D. R., Nickel, O., Kuhn, G. B. and Zerbini, F. M. 2007. Expression of Grapevine leafrollassociated virus 3 coat protein gene in Escherichia coli and production of polyclonal antibodies. Fitopatol. Bras. 32:496-500. https://doi.org/10.1590/S0100-41582007000600007
  18. Gulati-Sakhuja, A., Sears, J. L., Nunez, A. and Liu, H. Y. 2009. Production of polyclonal antibodies against Pelargonium zonate spot virus coat protein expressed in Escherichia coli and application for immunodiagnosis. J. Virol. Methods 160: 29-37. https://doi.org/10.1016/j.jviromet.2009.04.005
  19. Haupt, S., Cowan, G. H., Ziegler, A., Roberts, A. G., Oparka, K. J. and Torrance, L. 2005. Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164-181. https://doi.org/10.1105/tpc.104.027821
  20. Hema, M., Kirthi, N., Sreenivasulu, P. and Savithri, H. 2003. Development of recombinant coat protein antibody based IC-RT-PCR for detection and discrimination of sugarcane streak mosaic virus isolates from Southern India. Arch. Virol. 148:1185-1193. https://doi.org/10.1007/s00705-003-0015-y
  21. Hourani, H. and Abou-Jawdah, Y. 2003. Immunodiagnosis of Cucurbit yellow stunting disorder virus using polyclonal antibodies developed against recombinant coat protein. J. Plant Pathol. 85:197-204.
  22. Hull, R. 2013. Plant virology. Academic Press, London, UK. 1104 pp.
  23. Iracheta-Cardenas, M., Sandoval-Alejos, B. D., Roman-Calderon, M. E., Manjunath, K. L., Lee, R. F. and Rocha-Pena, M. A. 2008. Production of polyclonal antibodies to the recombinant coat protein of Citrus tristeza virus and their effectiveness for virus detection. J. Phytopathol. 156:243-250. https://doi.org/10.1111/j.1439-0434.2007.01385.x
  24. Jain, R. K., Pandey, A., N., Krishnareddy, M. and Mandal, B. 2005. Immunodiagnosis of groundnut and watermelon bud necrosis viruses using polyclonal antiserum to recombinant nucleocapsid protein of Groundnut bud necrosis virus. J. Virol. Methods 130:162-164. https://doi.org/10.1016/j.jviromet.2005.06.018
  25. Jelkmann, W. and Keim-Konrad, R. 1997. Immuno-capture polymerase chain reaction and plate-trapped ELISA for the detection of apple stem pitting virus. J. Phytopathol. 145: 499-503. https://doi.org/10.1111/j.1439-0434.1997.tb00357.x
  26. King, A. M. Q., Lefkowitz, E., Adams, M. J. and Carstens, E. B. 2011. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, Oxford, UK.
  27. Korimbocus, J., Preston, S., Danks, C., Barker, I., Coates, D. and Boonham, N. 2002. Production of monoclonal antibodies to Sugarcane yellow leaf virus using recombinant readthrough protein. J. Phytopathol. 150:488-494. https://doi.org/10.1046/j.1439-0434.2002.00791.x
  28. Kumari, S. G., Makkouk, K. M., Katul, L. and Vetten, H. J. 2001. Polyclonal antibodies to the bacterially expressed coat protein of faba bean necrotic yellows virus. J. Phytopathol. 149:543-550. https://doi.org/10.1046/j.1439-0434.2001.00674.x
  29. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  30. Lee, S. C. and Chang, Y. C. 2008. Performances and application of antisera produced by recombinant capsid proteins of Cymbidium mosaic virus and Odontoglossum ringspot virus. Eur. J. Plant Pathol. 122:297-306. https://doi.org/10.1007/s10658-008-9293-2
  31. Lima, J. A. A., Nascimento, A. K. Q., Radaelli, P. and Purcifull, D. E. 2012. Serology applied to plant virology. In: Serological diagnosis of certain human, animal and plant diseases, ed. by M. Al-Moslih, pp. 71-94. InTech, Rijeka, Croatia.
  32. Martelli, G. 2012. Grapevine virology highlights 2010-2012. In: Proceedings of 17th Congress of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), pp. 13-31. October 7-14, 2012, Foundation Plant Services, University of California, Davis, CA, USA.
  33. Mutasa-Gottgena, E. S., Chwarszczynska, D. M., Halsey, K. and Asher, M. J. C. 2000. Specific polyclonal antibodies for the obligate plant parasite Polymyxa: a targeted recombinant DNA approach. Plant Pathol. 49:276-278. https://doi.org/10.1046/j.1365-3059.2000.00446.x
  34. Naidu, R. A. and Hughes, J. D. A. 2003. Methods for the detection of plant viral diseases in plant virology in sub-Saharan Africa. In: Proceedings of plant virology, eds. by J. D. A. Hughes and B. Odu, pp. 233-260. IITA, Ibadan, Nigeria.
  35. Raikhy, G., Hallan, V., Kulshrestha, S. and Zaidi, A. 2007. Polyclonal antibodies to the coat protein of Carnation etched ring virus expressed in bacterial system: production and use in immunodiagnosis. J. Phytopathol. 155:616-622. https://doi.org/10.1111/j.1439-0434.2007.01287.x
  36. Ritzenthaler, C., Pinck, M. and Pinck, L. 1995. Grapevine fanleaf nepovirus P38 putative movement protein is not transiently expressed and is a stable final maturation product in vivo. J. Gen. Virol. 76:907-915. https://doi.org/10.1099/0022-1317-76-4-907
  37. Ritzenthaler, C., Viry, M., Pinck, M., Margis, R., Fuchs, M. and Pinck, L. 1991 Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. J. Gen. Virol. 72:2357-2365. https://doi.org/10.1099/0022-1317-72-10-2357
  38. Salimi, M., Amini, M., Shams-Bakhsh, M. and Safaei, N. 2010. Expression of the movement and coat protein genes of tomato yellow leaf curl iran2 virus in E. coli. J. Biotechnol. 150: 480-480.
  39. Sanfacon, H., Wellink, J., Le Gall, O., Karasev, A., van der Vlugt, R. and Wetzel, T. 2009. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch. Virol. 154:899-907. https://doi.org/10.1007/s00705-009-0367-z
  40. Savenkov, E. I., Germundsson, A., Zamyatnin, A. A. Jr., Sandgren, M. and Valkonen, J. P. 2003. Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana. J. Gen. Virol. 84:1001-1105. https://doi.org/10.1099/vir.0.18813-0
  41. Serghini, M. A., Fuchs, M., Pinck, M., Reinbolt, J., Walter, B. and Pinck, L. 1990. RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location. J. Gen. Virol. 71:1433-1441. https://doi.org/10.1099/0022-1317-71-7-1433
  42. Sokhandan Bashir, N., Khabbazi, A. D. and Torabi, E. 2009. Isolation of the gene coding for movement protein from Grapevine fanleaf virus. Iranian J. Biotechnol. 7:258-261.
  43. Sokhandan Bashir, N., Pashaee, A. and Doulati-Baneh, H. 2011. Characterization of the full length coat protein gene of Iranian Grapevine fanleaf virus isolates, genetic variation and phylogenetic analysis. Iranian J. Biotechnol. 9:213-221.
  44. Vigne, E., Demangeat, G., Komar, V. and Fuchs, M. 2005. Characterization of a naturally occurring recombinant isolate of Grapevine fanleaf virus. Arch. Virol. 150:2241-2255. https://doi.org/10.1007/s00705-005-0572-3
  45. Wolf, S., Deom, C. M., Beachy, R. N. and Lucas, W. J. 1989. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377-379. https://doi.org/10.1126/science.246.4928.377

Cited by

  1. Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus vol.8, pp.4, 2018, https://doi.org/10.3390/bios8040111
  2. Molecular cloning, antiserum preparation and expression analysis during head regeneration of $$\upalpha $$α-crystallin type heat shock protein in Hydra vulgaris vol.97, pp.4, 2018, https://doi.org/10.1007/s12041-018-0982-0
  3. Production of a Polyclonal Antibody against the Recombinant Coat Protein of the Sugarcane Mosaic Virus and Its Application in the Immunodiagnostic of Sugarcane vol.8, pp.6, 2018, https://doi.org/10.3390/agronomy8060093