항공기내 무선통신 연구 동향 및 군통신에의 응용

  • Published : 2016.10.31

Abstract

본고에서는 차세대 항공시스템의 핵심요소 중 하나인 항공기내 무선통신 (WAIC: Wireless Avionics Intra-Communication) 시스템의 연구동향과 이를 군용기내 무선통신 시스템에서 응용하는 방안에 대해 알아본다. 먼저 항공기 내 유선 통신네트워크 기술 동향을 살펴본 뒤, 항공기내 무선통신 시스템에 사용할 수 있는 무선 표준 기술로써 IEEE 802.11, Bluetooth, IEEE 802.15.4 등의 무선통신 기술을 소개한다. 이후 현재 논의되고 있는 항공기내 무선통신 시스템을 위한 주파수 대역과 트래픽 모델을 소개한다. 또한 현재 논의되고 있는 항공기내 무선통신 시스템을 군용으로 응용할 때 고려해야 하는 점을 소개한다.

Keywords

References

  1. D. Winter, "Cyber physical systems - an aerospace industry perspective," [Online]. Available: http://www2.ee.washington.edu/research/nsl/aar-cps/winterrev4.pdf, 2008.
  2. M. Pantiz, et al, "The opportunities and challenges associated with wireless interconnects in aircraft," Proceedings of the institution of mechanical engineers part G-Journal of aerospace engineering, 224(4), pp.459-470. 2010. https://doi.org/10.1243/09544100JAERO566
  3. D. K. Dang, A. Mifdaoui, and T. Gayraud, "Fly-bywireless for next generation aircraft: Challenges and potential solutions", in Wireless Days (WD), IFIP, pp.1-8. 2012.
  4. N. E. Safwat, M. A. El-Dakroury, A. Zekry, "The evolution of aircraft data networks," International Journal of Computer Applications, 94(11), pp.27-32. 2014. https://doi.org/10.5120/16389-5968
  5. A. Aglargoz, H. Spangenberg, "Safety and reliability analysis of wireless data communication concepts for flight control systems," in Digital Avionics Systems Conference (DASC), IEEE/AIAA 33rd, pp.2E2-1-2E2-12. 2014.
  6. Issa Jacob, A Study of a Reconnaissance Surveillance Vehicle, NPS041003, 2012.
  7. 조문제, 정방철, 박판근, 장우혁, 반태원, "항공기내 무선 네트워크에서 백홀 트래픽 감소 기법," 한국정보통신학회논문지, Vo. 20, No. 9, pp. 1704-1709, Sep. 2016. https://doi.org/10.6109/JKIICE.2016.20.9.1704
  8. Office of the Secretary of Defense, Unmanned Aerial Vehicle Reliability Study, 2003.
  9. ITU-R, Technical characteristics and operational objectives for wireless avionics intra-communications (WAIC), Report ITU-R M.2197, 2010.
  10. ITU-R, Compatibility analysis between wireless avionic intra-communication systems and systems in the existing services in the frequency band 4200-4400 MHz, Report ITU-R M.2319, 2014.
  11. ITU-R, Technical characteristics and spectrum requirements of Wireless Avionics Intra-Communications systems to support their safe operation, Report ITU-R M.2283, 2013.
  12. Condor Engineering, MIL-STD-1553 Tutorial, 2000.
  13. Data Device Corporation, MIL-STD-1553 Designer's Guide Sixth Edition, 2003.
  14. Condor Engineering, ARINC Protocol Tutorial, 2000.
  15. C. M. Fuchs, "The Evolution of avionics net-works from ARINC 429 to AFDX," The Seminars Fu-ture Internet (FI), Innovative Internet Technolo-gies and Mobile Communication (IITM) and Aero-space Networks (AN), pp.65-76, 2012.
  16. Condor Engineering, AFDX Tutorial, 2005.
  17. Creative Electronic Systems S.A., CES White Paper on AFDX, 2003.
  18. Wireless LAN Working Group. IEEE Standard Part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), March 2012
  19. Wi-Fi Alliance, [Online]. Available: https://www.wi-fi.org/
  20. Bluetooth technology, [Online]. Available: https://www.bluetooth.com/
  21. Institute of Electrical and Electronic Engineers, Inc., "IEEE Std. 802.15.4-2003, IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs)", New York: IEEE Press, October 2003.
  22. The ZigBee Alliance, [Online]. Available: http://www.zigbee.org/
  23. 곽영길, 항공주파수 대역 확보 및 활용 효율화 방안 연구, 국토해양부, 2012.