Functionality of Dairy Foods on Osteoporosis

  • Moon, Yong-Il (Dept. of Animal Source Foods, Woosuk University) ;
  • Lee, Sunho (Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Oh, Sangnam (Dept. of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Kim, Younghoon (Dept. of Animal Science and Institute of Milk Genomics, Chonbuk National University)
  • Received : 2016.08.30
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, which results in a markedly increased risk of traumatic fractures. This disease is a worldwide health problem with a high prevalence. Recently, various dietary components have been found to minimize the risk of developing osteoporosis through their ability to stimulate bone formation and optimize bone health. Among them, probiotics and fermented milk can have beneficial effects to human health. Bioactive compounds derived from probiotics in fermented milk can especially modulate physiological functions related to bone health. Here, we review the evidence to support these insights into newly found functionality of dairy foods for osteoporosis prevention.

Keywords

References

  1. Al-Azzawi F. 2008. Prevention of postmenopausal osteoporosis and associated fractures: Clinical evaluation of the choice between estrogen and bisphosphonates. Gynecol. Endocrinol. 24:601-609. https://doi.org/10.1080/09513590802296245
  2. Arlot, M. C., Meunier, P. J. and Chavassieux, P. 1995. Effects of long-term alendronate treatment for postmenopausal osteoporosis on bone histomorphometry. J. Bone Miner. Res. 10:1:S199.
  3. Aubin, J. E. 2001. Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord. 2:81-94. https://doi.org/10.1023/A:1010011209064
  4. Axelrod, D. W. and Teitelbaum, S. L. 1994. Results of long-term cyclical etidronate therapy: Bone histomorphometry and clinical correlates. J. Bone Miner. Res. 9:1:S136.
  5. Balena, R., Toolan, B. C., Shea, M., Markatos, A., Myers, E. R., Lee, S. C., Opas, E. E., Seedor, J. G., Klein, H., Frankenfield, D., Quartuccio, H., Fioravanti, C., Clair, J., Brown, E., Hayes, W. C. and Rodan, G. A. 1993. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J. Clin. Invest. 92:2577-2586. https://doi.org/10.1172/JCI116872
  6. Bennett, C. N., Longo, K. A., Wright, W. S., Suva, L. J., Lane, T. F., Hankenson, K. D. and MacDougald O. A. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. 102:3324-3329. https://doi.org/10.1073/pnas.0408742102
  7. Cashman, K. D. 2007. Diet, nutrition, and bone health. J. Nutr. 137:2507S-2512S. https://doi.org/10.1093/jn/137.11.2507S
  8. Cornish, J. 2004. Lactoferrin promotes bone growth. BioMetals. 17:331-335. https://doi.org/10.1023/B:BIOM.0000027713.18694.91
  9. Dane, C., Dane, B., Cetin, A. and Erginbas, M. 2008. Effect of risedronate on biochemical marker of bone resorption in postmenopausal women with osteoporosis or osteopenia. Gynecol. Endocrinol. 24:207-213. https://doi.org/10.1080/09513590801895617
  10. Danone. 2001. Fermented foods and healthy digestive functions. France: Danone Publications, John Libbey Euro text.
  11. Davis, S., Oliver, A., Goeckeritz, B. and Sachdeva, A. 2010. All about osteoporosis: A comprehensive analysis. J. Muscoskel. Med. 27:149-153.
  12. Deeth, H. C. and Tamime, A. Y. 1981. Yogurt, nutritive and therapeutic aspects. J. Food Prot. 44:78-86. https://doi.org/10.4315/0362-028X-44.1.78
  13. Dekker, J., Collett, M., Prasad, J. and Gopal, P. 2007. Functionality of probiotics potential for product development. Forum Nutr. 60:196-208.
  14. Ebeling, P. R. 2008. Clinical practice. Osteoporosis in men. N. Engl. J. Med. 358:1474-1482. https://doi.org/10.1056/NEJMcp0707217
  15. Falk, P. G., Hooper, L. V., Midtvedt, T. and Gordon, J. F. 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:1157-1170.
  16. Fernandes, C. F., Shahani, K. M. and Amer, M. A. 1987. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev. 46:343-356. https://doi.org/10.1111/j.1574-6968.1987.tb02471.x
  17. Fleisch, H. 1991. Bisphosphonates: Pharmacology and use in the treatment of tumor-induced hypercalcaemic and metastatic bone disease. Drugs. 42:919-944. https://doi.org/10.2165/00003495-199142060-00003
  18. Frei, P., Fried, M., Hungerbuhler, V., Rammert, C., Rousson, V. and Kullak-Ublick, G. A. 2006. Analysis of risk factors for low bone mineral density in inflammatory bowel disease. Digestion 73:40-46. https://doi.org/10.1159/000092013
  19. Fujiwara, S., Hashiba, H., Hirota, T. and Forstner, J. F. 1997. Proteinaceous factor(s) in culture supernatant fluids of Bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Appl. Environ. Microbiol. 63:506-512.
  20. Garnero, P., Shih, W. J., Gineyts, E., Karpf, D. B. and Delmas, P. D. 1994. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J. Clin. Endocrinol. Metab. 79:1693-1700.
  21. Gill, H. S. and Guarner, F. 2004. Probiotics and human health: A clinical perspective. Postgrad. Med. J. 80:516-526. https://doi.org/10.1136/pgmj.2003.008664
  22. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87:175-188. https://doi.org/10.1111/j.1574-6968.1990.tb04887.x
  23. Guy, J. A., Shea, M., Peter, C. P., Morrissey, R. and Hayes, W. C. 1993. Continuous alendronate treatment throughout growth, maturation, and aging in the rat results in increases in bone mass and mechanical properties. Calcif Tissue Int. 53:283-288. https://doi.org/10.1007/BF01320915
  24. Harada, S. and Rodan, G. A. 2003. Control of osteoblast function and regulation of bone mass. Nature 423:349-355. https://doi.org/10.1038/nature01660
  25. Iotsoval, V., Caamanol, J., Loy, J., Yang, Y., Lewin, A. and Bravo, R. 1997. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3:1285-1299. https://doi.org/10.1038/nm1197-1285
  26. Jensen, R. G., Ferris, A. M. and Lammi-Keefe, C. J. 1991. The composition of milk fat. J. Dairy Sci. 74:3228-3243. https://doi.org/10.3168/jds.S0022-0302(91)78509-3
  27. Kato, K., Toba, Y. and Matsuyama, H. 2000. Milk basic protein enhances the bone strength in ovariectomized rats. J. Food Biochem. 24:467-476. https://doi.org/10.1111/j.1745-4514.2000.tb00716.x
  28. Lawrence, G. R. 2005. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Invest. 115:3318-3325. https://doi.org/10.1172/JCI27071
  29. Lee, Y. K., Nomoto, K., Salminen, S. and Gorbach, S. L. 1999. Handbook of probiotics. New York: John Wiley & Sons.
  30. Loget, F., Clough, J., Oliveira, M., Daury, M. C., Sabokbar, A. and Offord, E. 2002. Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem. Biophys. Res. Commun. 296:261-266. https://doi.org/10.1016/S0006-291X(02)00849-5
  31. Marcus, R. 1993. Cyclic etidronate: Has the rose lost its bloom? Am. J. Med. 95:555-556. https://doi.org/10.1016/0002-9343(93)90349-T
  32. Marshall, K. 2004. Therapeutic applications of whey protein. Altern. Med. Rev. 9:136-156.
  33. Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T. 1995. Purified and characterization of angiotensin I-converting enzyme inhibitors form sour milk. J. Dairy Sci. 78:777-783. https://doi.org/10.3168/jds.S0022-0302(95)76689-9
  34. Narva, M., Collin, M., Lamberg-Allardt, C., Karkkainen, M., Poussa, T., Vapaatalo, H. and Korpela, R. 2004. Effects of long-term intervention with Lactobacillus helviticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann. Nut. Metabol. 48:228-234. https://doi.org/10.1159/000080455
  35. Ohta, H., Komukai, S., Makita, K., Masuzawa, T. and Nozawa, S. 1999. Effects of 1-year ipriflavone treatment on lumbar bone mineral density and bone metabolic markers in postmenopausal women with low bone mass. Horm Res. 51:178-183.
  36. Pehrsson, P. R., Haytowitz, D. B., Holden, J. M., Perry, C. R. and Beckler, D. G. 2000. USDA's National food and nutrient analysis program: Food sampling. J. Food Compos. Anal. 13:379-389. https://doi.org/10.1006/jfca.1999.0867
  37. Raisz, L. G. 2005. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Invest. 115:3318-3325. https://doi.org/10.1172/JCI27071
  38. Riggs, B. L., Khosla, S. and Melton, L. J. III. 2001. The type I/type II model for involutional osteoporosis. Osteoporosis. Academic Press, San Diego.
  39. Saarela, M., Lahteenmaki, L., Crittenden, R., Salminen, S., Mattila-Sandholm, T. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Microbiol. 78: 99-117. https://doi.org/10.1016/S0168-1605(02)00235-0
  40. Sahota, O. 2010. Reducing the risk of fractures with calcium and vitamin D. BMJ. 340:b5492. https://doi.org/10.1136/bmj.b5492
  41. Salminen, S., Wright, A. V. and Ouwehand, A. 2004. Lactic acid bacteria, microbiological and functional aspects. New York, NY.
  42. Schenk, R., Eggli, P., Fleisch, H. and Rosini, S. 1986. Quantitative morphometric evaluation of the inhibitory activity of new minobisphosphonates on bone resorption in the rat. Calcif Tissue Int. 38:342-349. https://doi.org/10.1007/BF02555748
  43. Shinoda, H., Adamek, G., Felix, R., Fleisch, H., Schenk, R. and Hagan, P. 1983. Structureactivity relationships of various bisphosphonates. Calcif Tissue Int. 35:87-99. https://doi.org/10.1007/BF02405012
  44. Silvennoinen, J. A., Karttunen, T. J., Niemela, S. E., Manelius, J. J and Lehtola, J. K. 1995. A controlled study of bone mineral density in patients with inflammatory bowel disease. Gut. 37:71-76. https://doi.org/10.1136/gut.37.1.71
  45. Silverwood, B. 2003. Building healthy bones. Paediatr Nurs. 15:27-29. https://doi.org/10.7748/paed.15.5.27.s21
  46. Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H. and Nurminen, M-L. 2002. Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69:103-111.
  47. Sprague, S. M. 2000. Mechanism of transplantation-asscociated bone loss. Pediatr Nephrol. 14:650-653. https://doi.org/10.1007/s004670000359
  48. Takada, Y., Kobayashin, N., Kato, K., Matsuyama, H., Yahiro, M. and Aoe, S. 1997b. Effects of whey protein on calcium and bone metabolism in ovariectomized rats. J. Nut. Sci. Vitaminol. 43:199-210. https://doi.org/10.3177/jnsv.43.199
  49. Takada, Y., Kobayashin, N., Matsuyama, H., Kato, K., Yamamura, J., Yahiro, M., Kumegawa, M. and Aoe, S. 1997a. Whey protein suppresses the osteoclast mediated bone reseption and osteoclast cell formation. Int. Dairy J. 7:821-825. https://doi.org/10.1016/S0958-6946(97)00073-3
  50. Tang, B. M., Eslick, G. D., Nowson, C,, Smith, C. and Bensoussan, A. 2007. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet. 370:657-666. https://doi.org/10.1016/S0140-6736(07)61342-7
  51. Tannock, G. W. 1998. Studies of the intestinal microflora: A prerequisite for the development of probiotics. Int. Dairy. J. 8:527-533. https://doi.org/10.1016/S0958-6946(98)00082-X
  52. Tannock, G. W. 1999. A fresh look at the intestinal microflora. In Probiotics: A critical review. Edited by Tannock GW. Norfolk, UK: Horizon Scientific Press. 5-14.
  53. Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P. and Valdez, G. F. 1998. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J. Dairy Sci. 81:2336-2340. https://doi.org/10.3168/jds.S0022-0302(98)70123-7
  54. Teitelbaum, S. L. 2000. Bone resorption by osteoclasts. Science. 289:1504-1508. https://doi.org/10.1126/science.289.5484.1504
  55. The DIPART (vitamin D Individual Patient Analysis of Randomized Trials) Group, 2010. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ. 340, b5463. https://doi.org/10.1136/bmj.b5463
  56. Tilg, H., Moschen, A. R., Kaser, A., Pines, A. and Dotan, I. 2008. Gut, inflammation and osteoporosis: Basic and clinical concepts. Gut. 57:684-694. https://doi.org/10.1136/gut.2006.117382
  57. Toba, Y., Takada, Y., Yamamura, J., Tanaka, M., Matsuoka, Y., Kawakami, H., Itabashi, A., Aoe, S. and Kumegawa, M. 2000. Milk basic protein: A novel protective function of milk against osteoporosis. Bone 27:403-408. https://doi.org/10.1016/S8756-3282(00)00332-X
  58. Vitamin D and Calcium Supplementation to Prevent Cancer and Osteoporotic Fractures in Adults: U.S. Preventive Services Task Force Recommendation Statement. United States Preventative Task Force. 2012.
  59. Walsh, M. C., Kim, N., Kadono, Y., Rho, J., Lee, S. Y., Lorenzo, J. and Choi, Y. 2006. Osteoimmunology: Interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24:33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  60. Weber, P. 1999. The role of vitamins in the prevention of osteoporosis a brief status report. Int. J. Vitam. Nutr. Res. 69:194-197. https://doi.org/10.1024/0300-9831.69.3.194
  61. Ylikorkala, O. 2008. A more active role for gynecologists in the prevention of postmenopausal osteoporosis. Gynecol Endocrinol. 24:293-394. https://doi.org/10.1080/09513590802243403