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INTRODUCTION
Synaptic plasticity, which is the strengthening or the weakening 

of the synaptic response to stimulus, has attracted considerable 
attention from neuroscientists investigating various aspects of 
brain function. Long-term potentiation (LTP) and long-term 
depression (LTD) are the two major forms of synaptic plasticity 
observed in electrophysiology and other investigative studies 
examining at the synapses of the neurons [1]. The hippocampus, 
especially the region of Schaffer collateral–CA1 projection fibers, 
is the most well-studied region in the central nervous system 
for synaptic plasticity, and the mechanisms of LTP and LTD 
have already been well established. Synaptic plasticity in the 
hippocampus is one of the most widely recognized cellular and 
synaptic model of learning and memory in the neuroscience field 
and continues to be adapted in different behavioral or disease 
models for various brain regions.

LTD is the activity-dependent reduction in the efficacy and 

strength of synaptic transmission lasting for a few hours or longer. 
There are two major forms of LTD in the CNS: the N-methyl-
D-aspartate receptor (NMDAR)-dependent LTD [2,3] and 
NMDAR-independent or mGluR-dependent LTD [4-6]. These 
can be induced by different stimulating protocols in different 
regions and have been best investigated in the hippocampus and 
cerebellum. 

mGluR-dependent LTD was first observed at the synapses 
of the cerebellar parallel fiber—Purkinje cells [7-9]. mGluR-
dependent LTD involves the activation of mGluRs, which can 
be classified into three groups: Group I comprises mGluR1 and 
mGluR5, which are mainly present in the postsynaptic site [10] 
and have been mainly investigated in the context of LTD; Group 
II includes mGluR2 and mGluR 3; and Group III consists of 
mGluR4, mGluR6, mGluR7, and mGluR8. Groups II and III 
mGluRs are mainly expressed in the presynaptic site. Previous 
studies have shown that mGluR-dependent LTD can be induced 
after activation of mGluR1, mGluR5, mGluR2, mGluR3, and 
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in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly 
involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent 
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associated with mGluR-dependent LTD. 
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mGluR7 [6]. In this review, we will focus on mGluR-dependent 
LTD, especially in the cortical regions.

PROTOCOLS TO INDUCE mGluR LTD
Two major methods are used to induce mGluR-dependent 

LTD. First is the application of chemicals that stimulate mGluRs. 
Acute administration of Group I mGluR agonist 3,5-dihy-
droxyphenylglycine (DHPG) is the most common method to 
induce mGluR-dependent LTD throughout the brain [11,12]. 
Group II mGluR needs to be activated in some regions and Group 
II mGluR agonist 2S, 2'R, 3'R)-2-(2', 3'-dicarboxycyclopropyl)
glycine (DCG-IV) is one of the most well-known drugs capable of 
inducing LTD in the prefrontal cortex [13,14].

The second method of inducing mGluR-dependent LTD is low-
frequency stimulation (LFS). 900 single pulses in 1 Hz usually 
induces NMDAR-dependent LTD, and 900 pairs of 50-ms-apart 
pulses in 1 Hz are known to induce mGluR-dependent LTD [15-
17]. In the CA1 region of the hippocampus, paired-pulse LFS (PP-
LFS) activates Group I mGluRs and M1 muscarinic acetylecholine 
receptors [15,18,19]. However, in some cortical regions, such as 
the anterior cingulate cortex (ACC) and insular cortex (IC), 900 
single pulses in 1 Hz induce LTD that are fully blocked by (S)-α-
methyl-4-carboxyphenylglycine (MCPG), which is an antagonist 
to Groups I and II mGluRs [20-22]. In addition, there are also 
other unique protocols such as the application of mGluR agonists 
and electrical stimulation with tetanus [23,24] or using weaker 
LFS and maintaining the postsynaptic potential at –40 mV which 
is called the pairing protocol [25,26]. 

mGluR LTD MECHANISM
LTD dependent on Group I mGluR is the most studied form 

of mGluR-dependant LTD throughout the brain and has been 
extensively investigated by neuroscientists. Stimulation of Group 
I mGluR activates phospholipase C (PLC), inositol triphosphate 
(IP3) pathway to release Ca2+ from intracellular stores and 
protein kinase C (PKC) [27-29]. PKCα phosphorylates ser880 of 
GluA2 to trigger endocytosis of α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPAR) and reduce the 
level of surface expression [29-32]. Several other protein elements 
such as p38 mitogen-activated protein kinase (p38 MAPK) [33-
35], extracellular signal-regulated kinases (ERKs) [36], Arc 
[37,38], striatal-enriched protein phosphatase (STEP) [29,39-
41], phosphoinositide 3-kinase (PI3K) [42], protein tyrosine 
phosphatases (PTP) [34] are also known to be involved in 
Group I mGluR-dependent LTDs. Several detailed reviews of 
the mechanism of mGluR-dependent LTD have been published 
previously [6,12,43,44]. 

CORTICAL mGluR-DEPENDENT LTD
mGluR-dependent LTD in the hippocampus and the cere-

bellum have been extensively reviewed previously [6,12,43,44]. 
Here, we present an overview of the less-reviewed cortical regions. 

Anterior Cingulate Cortex

The anterior cingulated cortex (ACC) is known to participate 
in a wide variety of functions in the brain such as cognition, error 
detection, decision making, memory, emotion, and pain [45-
49]. Numerous human brain imaging studies have investigated 
the role of ACC in these functions, however, studies on synaptic 
plasticity in animals are mainly restricted to the pain field. The 
ACC consists of five layers (I, II, III, V, and VI) and the excitatory 
pyramidal neurons are mainly positioned in the layer II/III and 
V. Layer II/III pyramidal neurons mostly receive sensory inputs 
from the medial thalamus and project to layer V/VI neurons. 
Layer V pyramidal neurons receive inputs from layer II/III and 
the thalamus and send projections to other cortical regions. 
Numerous local interneurons such as parvalbumin (PV) and 
somatostatin (SOM) positive interneurons are localized in layer I 
and II-VI [50,51]. 

Field recordings in rat and mice have shown that LTD is in-
duced in the ACC with 1-Hz single-pulse LFS for 15 min and 
had similar results with several pharmacological studies [20,22]. 
Field recordings in rat were performed in the layer II, and the 
recordings in the mouse was done throughout the ACC layers. 
Treatment with MGPC (500 μM), an antagonist to mGluR 
of Groups I and II, inhibited this LTD in both rat and mice, 
but the NMDAR antagonist APV (50 μM) was not able to 
completely block LTD. Unlike the case with the hippocampus, 
single-pulse LFS in the neural populations of the ACC induced 
strong synaptic depression, and the NMDAR function was less 
important. Moreover, the mGluR5 antagonist MPEP (10 μM) had 
no effect on the ACC neurons, whereas the mGluR1 antagonist 
LY 367385 (100 μM) fully blocked this LFS-induced LTD. L-type 
voltage gated calcium channel (L-VGCC) blocker also inhibited 
the LTD in the ACC induced by single-pulse LFS. These results 
imply that single-pulse LFS induced by LTD in the ACC depends 
on mGluR1 and L-VGCC (Fig. 1A). LTD was also induced by 
combined treatment with DHPG (100 μM) and MPEP (10 μM) 
for 20 min. 

When a digit of hind paw or 2.5 cm of the tail was amputated, 
LTD induced by LFS as well as chemical LTD induced by 
DHPG+MPEP were impaired. Chronic peripheral injury was 
involved in the disruption of the mGluR-dependent synaptic 
plasticity in the ACC, and this could be one of the functional 
characteristics in a phantom pain models brain. By priming 
the ACC slice of the amputated animal with low-dose DHPG 
(20 μM) and MPEP (10 μM) before the application of LFS, the 
impairment in the LTD was rescued [20]. This priming effect 
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was PKC dependent. This type of metaplastic application could 
be a possible direction for the further development of treatment 
strategies in pain-related situations. 

Insular Cortex

IC is also a region known for its diverse functions, including 
perception, motor control, self-awareness, and cognitive func-
tioning. Several behavioral studies such as those pertaining to 
conditioned taste aversion [52-54] and pain [55-57] have been 
conducted in the past. However, only few IC studies address 
synaptic plasticity [58-60]. IC is divided into granular (GI), 
dysgranular (DI) and agranular (AI) cortices. All are composed of 
five layers as the ACC except the GI which has six layers including 
layer IV [61]. Pyramidal neurons are found mainly in the layer 
III and V [62] and there are also GABAergic interneurons in 
the layer V [63]. The afferent and efferent projections of the IC 
are well studied throughout the layers in several animal models 
although the cell type composition within layers still needs to be 
investigated further.

Two studies [21,64] was performed in a manner similar to 

that of Kang et al. 2012. Recordings were done throughout all 
the layers in the IC and was plotted as superficial (layer I~II/
III) and deep layer (layer V~VI). LTD in the IC was induced by 
1-Hz single-pulse LFS for 15 min, and this LTD was blocked by 
APV (50 μM), nimodipine (10 μM), a selective cannabinoid 1 
receptor (CB1R) antagonist AM251 (5 μM) and a selective protein 
phosphatase 1/2A (PP1/2A) inhibitor okadaic acid (1 μM). 
Interestingly, it was also fully blocked by MPEP (10 μM) but not 
CPCCOEt (100 μM), a selective mGluR1 antagonist. Therefore, 
LFS induced LTD in the IC is dependent on NMDAR, L-VGCC, 
CB1R, PP1/2A and mGluR5, when the same stimulating protocol 
induced mGluR1-dependent LTD in the ACC (Fig. 1B). DHPG 
(100 μM, 20 min) was also able to induce chemical LTD in 
the IC. This LTD was blocked when nimodipine (10 μM) was 
administered 20 min before DHPG infusion, thereby implying 
the importance of L-VGCC in DHPG-LTD. There was no layer 
difference in the experiments.

When the tail was amputated, LFS induced LTD was blocked 
in IC as ACC, but chemical LTD induced by DHPG remained 
unchanged [64]. Therefore, tail amputation might have more 
effect in the NMDAR than mGluR5 in IC. However, the impaired 

Fig. 1. Models of cortical mGluR-LTDs. 
(A) mGluR LTD in the ACC is mGluR1, 
L-VGCC and partially NMDAR dependent. 
(B) mGluR LTD in the IC is mGluR5, NMDAR, 
L-VGCC, CB1R and PP1/2A dependent. (C) 
mGluR LTD in the PFC is Group II mGluR, 
PLC, IP3, PKC and NMDAR dependent. 
(D) mGluR LTD in the perirhinal cortex 
is mGluR5, Group II mGluR and NMDAR 
dependent. (E) mGluR LTD in the visual 
cortex is Group II mGluR and NMDAR de-
pendent. 
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LFS-induced LTD could be improved by mGluR-dependent 
metaplasticity. Application of DHPG (20 μM) had no effect at 
the baseline, but subsequent LFS was able to induce LTD in the 
IC slice of the amputated mice. This priming effect was PKC 
dependent. 

Prefrontal Cortex

The prefrontal cortex (PFC) is a region known for working 
memory [65-67], attention [68-70] and executive function [71-73]. 
Numerous studies have investigated this region on several topics 
and is a popular research target because of its variety of functions. 
There are many more studies on mGluR-dependent LTD in 
PFC than in the ACC or IC; and few will be reviewed here. PFC 
consists of five layers as the ACC. Layer I contains neuropil, 
axons and GABAergic interneurons. Layers II/III and V/VI are 
composed of pyramidal neurons and various interneuron types 
[74]. 

Most of the mGluR LTD in the PFC is dependent on Group 
II mGluR. The Group I mGluR agonist DHPG (100 μM, 10~15 
min) was not able to induce LTD in the prefrontal slice, but acute 
bath application of the potent Group II mGluR agonist DCG 
IV (50~100 nM) showed depression of the synaptic response 
for more than 40 min in layer I-II to layer V pyramidal neuron 
glutamatergic synapses of rat PFC [75]. This mGluR-dependent 
LTD was blocked when the postsynaptic cell was injected with 
Ca2+ chelator BAPTA (100 mM). It was also blocked when APV 
(100 μM) was applied together with DCG IV [14]. Moreover, the 
phospholipase C inhibitor U-73122 (4 μM, bath application), 
IP3 receptor blocker heparin (4 mg/ml in recording electrode 
targeting postsynaptic neuron), PKC inhibitor RO318220 (0.2 
μM, bath application), all impaired the LTD. These results 
suggest that intracellular calcium, NMDAR-mediated responses, 
phospholipase C, IP3 receptor, and PKC together contribute to 
LTD induced by DCG IV (Fig. 1C). 

LTD induced by DCG IV (0.2 μM, 10 min) in layer V 
pyramidal neurons was impaired when rats were treated with 
cocaine repeatedly for more than 5 days [13]. This impairment 
of LTD was improved when selective D1-like receptor antagonist 
SCH23390 (0.5 mg/kg) was coadministered with cocaine. 
Moreover, bilateral intra-mPFC infusion of PKC inhibitor 
bisindolylmaleimide I (0.4 nmol/side) or adenosine A3 receptor 
antagonist MRS1220 (0.5 nmol/side) also improved the impaired 
LTD. These results indicate that repetitive cocaine exposure 
inhibits Group II mGluR function via D1-like receptor, PKC, and 
A3 receptor. 

A study on the importance of mGuR3 in LTD at PFC layer V 
pyramidal neurons and fear extinction has also been published 
[76]. Bath application of Group II agonist LY379268 (0.1 μM, 10 
min) was able to induce LTD in the mice PFC slice. This LTD was 
blocked when mGluR3-negative allosteric modulator VU0469942 
(10 μM) or VU0477950 (10 μM) was applied. When VU0477950 

(3~100 mg/kg) was intraperitonially injected, fear extinction 
learning was impaired. 

Perirhinal Cortex

The perirhinal cortex is the region situated within the medial 
temporal lobe and is involved in visual perception, memory, and 
several types of learning [77,78]. Ablation studies in perirhinal 
cortex of rats and primates show impairment in recognition 
memory tasks; however, such studies on the hippocampal lesions 
showed less effect [79-82]. Perirhinal cortex is composed of 
agranular cortex with five layers and dysgranular cortex with 
six layers, but the cell types within this region have not been well 
studied yet [83].

The perirhinal cortex showed mGluR-dependent LTD when 
DHPG (50 μM, 20 min) or DGC IV (1 μM, 20 min) was applied; 
however, Group III mGluR agonist L-AP4 (0.1~1 mM) showed 
only acute depression in the superficial layer (layer I and II/
III) during drug application [84]. LFS (200 stimuli, 1Hz) with 
depolarization of postsynaptic neuron to –40 mV also induced 
LTD in the layer II/III neurons of perirhnial cortex [25]. This 
LTD was blocked by APV (50 μM), MCPG (500 μM), Group 
I mGluR antagonist AIDA (500 μM). The Group II mGluR 
antagonist EGLU (200 μM) only blocked the LTD when LFS was 
delivered at –70 mV but not –40 mV. Moreover, DHPG (50 μM) 
was not able to induce chemical LTD, but when DCG IV (0.5 μM) 
was treated together, LTD was induced. These results indicate 
the involvement of Group I and II mGluR in the two type of 
perirhinal cortex LTDs (Fig. 1D). 

These mGluRs are also necessary in familiarity discrimination 
[85]. When MPEP (3 mg/kg) or Group II mGluR antagonist 
LY 341495 (3 mg/kg) was systemically administered at the 
acquisition period, it had no effect on familiarity discrimination. 
However, when the two drugs were combined, familiarity 
discrimination was impaired at 24 h, but not at 15 min after drug 
administration. The drugs had no effect when it was treated after 
the sample phase of before the test. Thus, these results address the 
importance of Group I mGluR, especially mGluR5, and Group II 
mGluR in the acquisition.

Visual cortex

The visual cortex is the region in the dorsal part of our 
brain responsible for visual information processing. It is one 
of the most well-investigated regions and is a popular subject 
for neuroscientific investigation [86-90]. The visual cortex is 
composed of six layers and layer II/III and V are the major 
pyramidal cell layers [91]. Inhibitory interneurons are positioned 
in the layer II/III, IV and V, and it consists of PV, SOM, vasoactive 
intestinal peptide (VIP) and reelin positive intereneurons [92].

However, limited data are available on mGluR-dependent LTD 
in the visual cortex [93]. LTD was induced when quisqualate (10 
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μM), an agonist of the AMPAR, kainate receptor (KAR) and 
Group I mGluR, was introduced into the rat visual cortex in 
the presence of CNQX, AMPA and KAR antagonist, and APV 
[23]. Applying mGluR agonist trans-1-amino-cyclopentane-
1,3-dicarboxylic acid (tACPD, 10 μM) itself had only an acute 
depression effect in layer II and III neurons of rat visual cortex 
slices; however, LTD was induced by the combined treatment 
with APV and tetanization [23,24]. There was also a study 
examining the layer variations of LTD in the rat visual cortex 
using pairing protocols [26]. They treated LY 341495 (100 μM) 
in a high concentration to block all mGluRs and found that only 
LTD in layer VI neurons were mGluR-dependent with the pairing 
protocol. In mice, LFS-induced LTD was dependent on NMDAR 
and mGluR2 in layer II/III neurons [94]. LTD was induced by 
stimulation with 900 pulses of 1 Hz, but was blocked by treatment 
with APV (50 μM) or mGluR2 antagonist MCCG (100 μM, Fig. 
1E). It was also impaired in mGluR2 KO mice. Chemical LTD 
was also induced with DCG IV (1 μM, 20 min). 

However, the ocular dominance plasticity was normal in 
mGluR2 KO mice indicating the independence of mGluR2 
dependent LTD in this process.

CONCLUDING REMARKS
We have reviewed the mGluR-dependent LTDs in a variety of 

cortical regions of the brain. In addition, we provided an overview 
of the physiological conditions involved in this type of LTD and 
mGluR activation itself. The ACC and IC showed the relation 
of Group I mGluR-dependent LTD and pain related situations. 
Group II mGluR-dependent LTD was observed in the PFC and 
perirhinal cortex, which are involved in addiction and learning. 
LTD in the visual cortex was also dependent on Group II mGluR, 
but further investigations are necessary to determine the related 
functions.

Most of the reported and on-going studies on mGluR synaptic 
plasticity involve the role of the hippocampus, cerebellum, VTA, 
and striatum in learning and memory, motor function, and drug 
addiction fields. Neurodegenerative disease models are frequently 
used in these investigation. The cortex regions examined in this 
review have been investigated to a relatively lesser extent, and 
further investigations are necessary in relation to other specific 
behaviors or pathological situations. In addition, recent advances 
in pharmacology and technology are expected to facilitate studies 
on in vivo synaptic plasticity during such behaviors or specific 
conditions to identify solutions to more complex questions. 
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