Acknowledgement
Supported by : Beijing Natural Science Foundation
References
- Chatzigogos, C.T., Pecker, A. and Salencon, J. (2009), "Microelement modeling of shallow foundations", Soil Dyn. Earthq. Eng., 29(6), 765-781. https://doi.org/10.1016/j.soildyn.2008.08.009
- Chen, C. and Ricles, J.M. (2009), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. D., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
- Chen, P.C., Chang, C.M., Spencer, Jr., B.F. and Tsai, K.C. (2015), "Adaptive model-based tracking control for real-time hybrid simulation", Bull. Earthq. Eng., 13(6), 1633-1653. https://doi.org/10.1007/s10518-014-9681-2
- Chen, Y.Q., Lü, X.L. et al. (2006), "Comparative study on the dynamic soil-structure interaction system with various soils by using shaking table model tests", China Civil Eng. J., 39(5), 57-64. (in Chinese)
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill Education, New York, USA.
- Enokida, R., Stoten, D. and Kajiwara, K. (2015), "Stability analysis and comparative experimentation for two substructuring schemes, with a pure time delay in the actuation system", J. Sound Vib., 346, 1-16. https://doi.org/10.1016/j.jsv.2015.02.024
- Heath, A., Darby, A.P. and Bawcombe, J. (2008), "Substructure testing for dynamic soil-structure interaction", Proceedings of the 2nf British Geotechnical Association International Conference on Foundations-ICOF, Garston, Watford, UK, June.
- Heath, A., Darby, A.P. and Bawcombe, J. (2008), "Substructure testing for dynamic soil-structure interaction", Proceedings of the 2nd British Geotechnical Association International Conference on Foundations - ICOF 2008.
- Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philos. T. Roy. Soc. London Series A - Mathematical Physical and Engineering Sciences, 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Horiuchi, T., Inoue, M., Konno, T. and Namita, D.Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. D., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Konagai, K. and Ahsan, R. (2002), "Simulation of nonlinear soil-structure interaction on a shaking table", J. Earthq. Eng., 6(1), 31-51. https://doi.org/10.1080/13632460209350409
- Luan, M.T. and Lin, G. (1996), "2 DOF lumped parameter model of dynamic impedances of foundation soils", J. Dalian Univ. Technol., 36(4), 477-482. (in Chinese)
- Medina, C., Aznarez, J.J., Padron, L.A. and Maeso, O. (2013), "Effects of soil-structure interaction on the dynamic properties and seismic response of piled structures", Soil Dyn. Earthq. Eng., 53, 160-175. https://doi.org/10.1016/j.soildyn.2013.07.004
- Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. D., 21(1), 79 -92. https://doi.org/10.1002/eqe.4290210106
- Neild, S.A., Stoten, D.P., Drury, D. and Wagg, D.J. (2005), "Control issues relating to real-time substructuring experiments using a shaking table", Earthq. Eng. Struct. D., 34(9), 1171-1192. https://doi.org/10.1002/eqe.473
- Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D. and Modaressi, A. (2008),"Numerical simulation of dynamic soil-structure interaction in shaking table testing", Soil Dyn. Earthq. Eng., 28(6), 453-467. https://doi.org/10.1016/j.soildyn.2007.07.011
- Shang, S.P., Zhang, J.S. et al. (2007), "Test study of the dynamic interaction of structure-box foundation-soil system", J. Hunan University (Natural Sciences), 4(1), 1-4. (in Chinese)
- Stoten, D.P. (1989), "A minimal controller synthesis adaptive algorithm for environmental systems", Science et Technique du Froid, 52(3), 277-286.
- Stoten, D.P. and Benchoubane, H. (1990), "Robustness of a minimal controller synthesis algorithm", Int. J. Control, 51(4), 851-861. https://doi.org/10.1080/00207179008934101
- Stoten, D.P. and Hyde, R.A. (2006), "Adaptive control of dynamically sub structured systems: the single-input, single-output case", Proc. IMechE, Part I: J. Systems and Control Engineering, 220(1), 63-79. https://doi.org/10.1243/09596518JSCE171
- Stoten, D.P., Lim, C.N. and Neild, S.A. (2007), "Assessment of controller strategies for real-time dynamic substructuring of a lightly damped system", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221(12), 235-250. https://doi.org/10.1243/0954406JMES419
- Stoten, D.P., Tu, J.Y. and Li, G. (2009), "Synthesis and control of generalised dynamically substructured systems", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 223(13), 371-392. https://doi.org/10.1243/13506501JET476
- Tu, J.Y., Lin, P.Y., Stoten, D.P. and Li, G. (2010), "Testing of dynamically substructured, base-isolated systems using adaptive control techniques", Earthq. Eng. Struct. D., 39(6), 661-681. https://doi.org/10.1002/eqe.962
- Veletsos, A.A. and Wei, Y.T. (1970), "Lateral and rocking vibrations of footings", J. Soil Mech. Found. Div. - ASCE, 97(9), 1227-1249.
- Wallace, M.I., Wagg, D.J. and Nelld, S.A. (2005), "An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring", Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 461(2064), 3807-3826. https://doi.org/10.1098/rspa.2005.1532
- Wang, Q., Wang, J.T., Jin, F., Chi, F.D. and Zhang, C.H. (2011), "Real-time dynamic hybrid testing for soil-structure interaction analysis", Soil Dyn. Earthq. Eng., 12(31), 1690-1702.
- Wilson, E.L. (2002), Three-Dimensional Static and Dynamic Analysis of Structures, Computers and Structures, Inc. Berkeley, California, USA.
- Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Prentice Hall, Englewood Cliffs, New Jersey, USA.
- Yan, X.Y., Li, Z.X., Han, Q. and Du, X.L. (2014), "Shaking tables test on long-span rigid-framed bridge considering soil-structure interaction", J. Eng. Mech. - ASCE, 31(2), 58-64. (in Chinese)
- Zhu, F., Wang, J.T., Jin, F., Gui, Y. and Zhou, M.X. (2014), "Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step", Smart Struct. Syst., 6(14), 1269-1289.
Cited by
- Real-time dynamic substructure testing of soil-adjacent structure system based on branch mode method vol.19, pp.6, 2017, https://doi.org/10.21595/jve.2017.18301
- Effects of Equipment-Structure-Soil Interaction on Seismic Response of Equipment and Structure via Real-Time Dynamic Substructuring Shaking Table Testing vol.2017, 2017, https://doi.org/10.1155/2017/1291265
- Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO 3 particles vol.132, 2017, https://doi.org/10.1016/j.matdes.2017.06.061
- Substructuring stability analysis in light of comprehensive transfer system dynamics vol.16, pp.1, 2018, https://doi.org/10.1007/s10518-017-0192-9
- The performance of delay compensation in real-time dynamic substructuring 2017, https://doi.org/10.1177/1077546317740488
- Effect of Soil-Structure Interaction on Seismic Performance of Long-Span Bridge Tested by Dynamic Substructuring Method vol.2017, 2017, https://doi.org/10.1155/2017/4358081
- Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge vol.17, pp.4, 2019, https://doi.org/10.12989/eas.2019.17.4.373
- Dynamic Force Loading Strategy for Effective Force Testing Considering Natural Velocity Feedback Compensation and Nonlinearity vol.21, pp.1, 2016, https://doi.org/10.1142/s0219455421500073
- Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system vol.28, pp.1, 2016, https://doi.org/10.12989/sss.2021.28.1.105
- Gain-margin based discrete-continuous method for the stability analysis of real-time hybrid simulation systems vol.148, pp.None, 2021, https://doi.org/10.1016/j.soildyn.2021.106776