참고문헌
- Aissani, K., Bouiadjra, M.C, Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-764. https://doi.org/10.12989/sem.2015.55.4.743
- Afkhami, Z. and Farid, M. (2014), "Thermo-mechanical vibration and instability of carbon nanocones conveying fluid using nonlocal Timoshenko beam model", J. Vib. Control, Doi: 10.1177/1077546314534715.
- Ahouel, M., Houari, M.S.A.E.A., Bedia, A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621630.
- Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akgoz, B. and Civalek, O. (2012a), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Akgoz, B. and Civalek, O. (2014a), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Akgoz, B. and Civalek, O. (2014b), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib.Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
- Akgoz, B. and Civalek, O. (2014c), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Akgoz, B. and Civalek, O. (2015a), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Akgoz, B. and Civalek, O. (2015b), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
- Ansari, R, Gholami, R. and Darabi, M.A. (2012a), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
- Ansari, R., Gholami, R and Rouhi, H (2012b), "Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions", J. Vib. Control, 19(5), 708-719 https://doi.org/10.1177/1077546312439223
- Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062. https://doi.org/10.1016/j.apm.2014.11.029
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Design, 31, 2324-3249. https://doi.org/10.1016/j.matdes.2009.12.006
- Bahraini, M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
- Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal theory", Struct. Eng. Mech., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
- Bayat, M.I., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
- Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag doublewalled carbon nanotubes", Compos. Part B, 57, 2124.
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A., Benzair, A. (2015), "Nonlinear vibration properties of a zigzag singlewalled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 2937.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zerothorder Shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Broek, D. (1986), Elementary engineering fracture mechanics, Martinus Nijhoff Publishers, Dordrecht.
- Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55(1), 23-36 https://doi.org/10.1016/S0263-8223(01)00130-1
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R., (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
- Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332,331-338. https://doi.org/10.4028/www.scientific.net/AMM.332.331
- Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39. https://doi.org/10.1016/j.ijmecsci.2014.08.019
- Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
- Eringen, AC (1972), Nonlocal polar elastic continua. Int. J. Eng. Sci., 10(1),1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear size-dependent dynamics of microarches with modal interactions", J. Vib. Control, Doi: 10.1177/1077546314565439.
- Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Kahrobaiyan, M.H., Asghari, M., Hoore, M. and Ahmadian, M.T. (2011), "Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory", J. Vib. Control, Doi:10.1177/1077546311414600.
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-Dimensional Systems and Nanostructures, 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
- Kocatürk, T. and Akbas, S.D., (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Kong, S.L., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater.Res., 694-697, 221-224. https://doi.org/10.4028/www.scientific.net/AMR.694-697.221
- Kural, S. and Erdogan, O. (2015), "Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation", J. Vib. Control, Doi: 10.1177/1077546315589666.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control., Doi: 10.1177/1077546314544513.
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11,415-448. https://doi.org/10.1007/BF00253946
- Mindlin, R.D. (1963), Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219
- Movahedian, B. (2012), "Dynamic stiffness matrix method for axially moving micro-beam", Iteraction Multis. Mech., 5(4), 385-397. https://doi.org/10.12989/imm.2012.5.4.385
- Newmark, N.M. (1959), "A method of computation for structural dynamics", Eng. Mech. Div. - ASCE, 85, 67-94.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16,2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
- Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chemistry, 76, 292-297. https://doi.org/10.1021/ac035048k
- Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12, 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
- Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
- Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE 86,1611-1626. https://doi.org/10.1109/5.704266
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "Vibration behavior of a rotating nonuniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95,740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
- Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
- Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A., Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11,385-414. https://doi.org/10.1007/BF00253945
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48, 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26, 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
- Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams", Smart Struct. Syst., 16(5), 891-918. https://doi.org/10.12989/sss.2015.16.5.891
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693710.
- Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors and Actuators, 35, 31-59.
피인용 문헌
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
- Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
- Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
- Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.263
- Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
- Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.573
- Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.567
- A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2016, https://doi.org/10.12989/anr.2018.6.2.147
- Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.219
- Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.527
- Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
- Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.623
- Forced vibration analysis of functionally graded sandwich deep beams vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.259
- Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
- Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2016, https://doi.org/10.12989/amr.2019.8.4.259
- A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with ene vol.73, pp.3, 2016, https://doi.org/10.12989/sem.2020.73.3.287
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2016, https://doi.org/10.12989/scs.2020.34.5.643
- Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.215
- Vibration of nonlocal perforated nanobeams with general boundary conditions vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.501
- Modal analysis of viscoelastic nanorods under an axially harmonic load vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.277
- Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects vol.25, pp.6, 2020, https://doi.org/10.12989/sss.2020.25.6.707
- Dynamic Analysis of Layered Functionally Graded Viscoelastic Deep Beams with Different Boundary Conditions Due to a Pulse Load vol.12, pp.5, 2016, https://doi.org/10.1142/s1758825120500556
- Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force vol.9, pp.1, 2016, https://doi.org/10.12989/anr.2020.9.1.047
- A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2016, https://doi.org/10.12989/sem.2020.75.2.157
- Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
- Transient response of 2D functionally graded beam structure vol.75, pp.3, 2020, https://doi.org/10.12989/sem.2020.75.3.357
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.583
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2016, https://doi.org/10.12989/gae.2021.24.6.545
- Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading vol.78, pp.1, 2016, https://doi.org/10.12989/sem.2021.78.1.015
- Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support vol.27, pp.13, 2021, https://doi.org/10.1177/1077546320947302
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.183
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.193