DOI QR코드

DOI QR Code

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
  • Received : 2016.05.11
  • Accepted : 2016.08.11
  • Published : 2016.12.25

Abstract

Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Keywords

References

  1. Aissani, K., Bouiadjra, M.C, Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-764. https://doi.org/10.12989/sem.2015.55.4.743
  2. Afkhami, Z. and Farid, M. (2014), "Thermo-mechanical vibration and instability of carbon nanocones conveying fluid using nonlocal Timoshenko beam model", J. Vib. Control, Doi: 10.1177/1077546314534715.
  3. Ahouel, M., Houari, M.S.A.E.A., Bedia, A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  4. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621630.
  5. Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  6. Akgoz, B. and Civalek, O. (2012a), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
  7. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  8. Akgoz, B. and Civalek, O. (2014a), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  9. Akgoz, B. and Civalek, O. (2014b), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib.Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
  10. Akgoz, B. and Civalek, O. (2014c), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
  11. Akgoz, B. and Civalek, O. (2015a), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
  12. Akgoz, B. and Civalek, O. (2015b), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
  13. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  14. Ansari, R, Gholami, R. and Darabi, M.A. (2012a), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
  15. Ansari, R., Gholami, R and Rouhi, H (2012b), "Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions", J. Vib. Control, 19(5), 708-719 https://doi.org/10.1177/1077546312439223
  16. Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062. https://doi.org/10.1016/j.apm.2014.11.029
  17. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Design, 31, 2324-3249. https://doi.org/10.1016/j.matdes.2009.12.006
  18. Bahraini, M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  19. Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal theory", Struct. Eng. Mech., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
  20. Bayat, M.I., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
  21. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag doublewalled carbon nanotubes", Compos. Part B, 57, 2124.
  22. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A., Benzair, A. (2015), "Nonlinear vibration properties of a zigzag singlewalled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 2937.
  23. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zerothorder Shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  24. Broek, D. (1986), Elementary engineering fracture mechanics, Martinus Nijhoff Publishers, Dordrecht.
  25. Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55(1), 23-36 https://doi.org/10.1016/S0263-8223(01)00130-1
  26. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R., (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  27. Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
  28. Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332,331-338. https://doi.org/10.4028/www.scientific.net/AMM.332.331
  29. Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39. https://doi.org/10.1016/j.ijmecsci.2014.08.019
  30. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  31. Eringen, AC (1972), Nonlocal polar elastic continua. Int. J. Eng. Sci., 10(1),1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  32. Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear size-dependent dynamics of microarches with modal interactions", J. Vib. Control, Doi: 10.1177/1077546314565439.
  33. Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  34. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  35. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  36. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
  37. Kahrobaiyan, M.H., Asghari, M., Hoore, M. and Ahmadian, M.T. (2011), "Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory", J. Vib. Control, Doi:10.1177/1077546311414600.
  38. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-Dimensional Systems and Nanostructures, 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
  39. Kocatürk, T. and Akbas, S.D., (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  40. Kong, S.L., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
  41. Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater.Res., 694-697, 221-224. https://doi.org/10.4028/www.scientific.net/AMR.694-697.221
  42. Kural, S. and Erdogan, O. (2015), "Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation", J. Vib. Control, Doi: 10.1177/1077546315589666.
  43. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  44. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  45. Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control., Doi: 10.1177/1077546314544513.
  46. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11,415-448. https://doi.org/10.1007/BF00253946
  47. Mindlin, R.D. (1963), Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219
  48. Movahedian, B. (2012), "Dynamic stiffness matrix method for axially moving micro-beam", Iteraction Multis. Mech., 5(4), 385-397. https://doi.org/10.12989/imm.2012.5.4.385
  49. Newmark, N.M. (1959), "A method of computation for structural dynamics", Eng. Mech. Div. - ASCE, 85, 67-94.
  50. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16,2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
  51. Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chemistry, 76, 292-297. https://doi.org/10.1021/ac035048k
  52. Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12, 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
  53. Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
  54. Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE 86,1611-1626. https://doi.org/10.1109/5.704266
  55. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "Vibration behavior of a rotating nonuniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
  56. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
  57. Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95,740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
  58. Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
  59. Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
  60. Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
  61. Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A., Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  62. Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11,385-414. https://doi.org/10.1007/BF00253945
  63. Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48, 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
  64. Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26, 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
  65. Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
  66. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  67. Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams", Smart Struct. Syst., 16(5), 891-918. https://doi.org/10.12989/sss.2015.16.5.891
  68. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693710.
  69. Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors and Actuators, 35, 31-59.

Cited by

  1. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
  2. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  3. Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
  4. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
  5. Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.263
  6. Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
  7. Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.573
  8. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
  9. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
  10. Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
  11. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.567
  12. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2016, https://doi.org/10.12989/anr.2018.6.2.147
  13. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.219
  14. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.527
  15. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
  16. Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.623
  17. Forced vibration analysis of functionally graded sandwich deep beams vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.259
  18. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
  19. Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2016, https://doi.org/10.12989/amr.2019.8.4.259
  20. A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with ene vol.73, pp.3, 2016, https://doi.org/10.12989/sem.2020.73.3.287
  21. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2016, https://doi.org/10.12989/scs.2020.34.5.643
  22. Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.215
  23. Vibration of nonlocal perforated nanobeams with general boundary conditions vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.501
  24. Modal analysis of viscoelastic nanorods under an axially harmonic load vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.277
  25. Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects vol.25, pp.6, 2020, https://doi.org/10.12989/sss.2020.25.6.707
  26. Dynamic Analysis of Layered Functionally Graded Viscoelastic Deep Beams with Different Boundary Conditions Due to a Pulse Load vol.12, pp.5, 2016, https://doi.org/10.1142/s1758825120500556
  27. Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force vol.9, pp.1, 2016, https://doi.org/10.12989/anr.2020.9.1.047
  28. A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2016, https://doi.org/10.12989/sem.2020.75.2.157
  29. Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
  30. Transient response of 2D functionally graded beam structure vol.75, pp.3, 2020, https://doi.org/10.12989/sem.2020.75.3.357
  31. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.583
  32. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2016, https://doi.org/10.12989/gae.2021.24.6.545
  33. Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading vol.78, pp.1, 2016, https://doi.org/10.12989/sem.2021.78.1.015
  34. Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support vol.27, pp.13, 2021, https://doi.org/10.1177/1077546320947302
  35. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.183
  36. An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.193