DOI QR코드

DOI QR Code

Research for Controlled Thermal Conductivity of p-Type Skutterudite Materials

P-type Skutterudite 열전소재의 열전도도 제어 연구

  • Son, Geon Sik (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Soon Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 손근식 (한국기술교육대학교 에너지신소재공학과) ;
  • 최순목 (한국기술교육대학교 에너지신소재공학과)
  • Received : 2016.05.12
  • Accepted : 2016.06.15
  • Published : 2016.11.01

Abstract

Skutterudite materials show PGEC (phonon glass electron crystal) characteristics which is an optimal strategy for designing high performance thermoelectric materials. Now two methods are in parallel to control thermal conductivity of skutterudites, a rattler-atoms doping method and a process for nanostructured bulk materials. Amount of rattler atoms in p-type skutterudite are depends on a Fe/Co ratio of matrix, and the optimal Fe/Co ratio has been reported about from 3:1 to 3.5:0.5 in $R(Fe,Co)_4Sb_{12}$ structure. In this paper, our discussion for rattler doping research was concentrated on double-rattler systems and DD-doped systems in p-type skutterudites. A melt spinning precess combined with high energy ball milling were suggested as a strategy for nanostructured bulk materials with PGEC (phonon glass electron crystal) characteristics in p-type skutterudites.

Keywords

References

  1. Z. G. Chen, Chinese Materials Research Society, 22, 535 (2012).
  2. K. H. Lee, J. Y. Kim, and S. M. Choi, Journal of the Korean Ceramic Society, 52, 1 (2014).
  3. H. J. Goldsmid, CRC Handbook of Thermoelectrics (ed., D. M. Rowe) (CRC Press, USA, 1995) p. 19.
  4. G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annual Review of Materials Science, 29, 94 (1999).
  5. G. A. Slack, CRC Handbook of Thermo-electrics (eds. M. Rowe) (CRC Press, USA, 1995).
  6. S. I. Kim and K. H. Lee, Science, 348, 109 (2015). [DOI: http://dx.doi.org/10.1126/science.aaa4166]
  7. H. J. Goldsmid and A. W. Penn, Phys. Lett., 27A, 523 (1968). [DOI: http://dx.doi.org/10.1016/0375-9601(68)90898-0]
  8. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, International Edition, 48, 8616 (2009). [DOI: http://dx.doi.org/10.1002/anie.200900598]
  9. J. Y. Cho, Acta Materialia, 60, 2104 (2012). [DOI: http://dx.doi.org/10.1016/j.actamat.2011.12.022]
  10. R. Liu, J. Mater. Res., 26, 1813 (2011). https://doi.org/10.1557/jmr.2011.85
  11. X. F. Tang, J. Mater. Res., 17, 2953 (2002). https://doi.org/10.1557/JMR.2002.0428
  12. G. S. Nolas, Phy. Rev. B, 58, 164 (1998). https://doi.org/10.1103/PhysRevB.58.164
  13. C. Zhou, Intermetallics, 19, 1390 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2011.04.015]
  14. J. P. Fleurial, Proc. 15th International Conference on Thermoelectrics (California, USA, 1996). [DOI: http://dx.doi.org/10.1109/ict.1996.553263]
  15. R. Liu, Intermetallics, 19, 1747 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2011.06.010]
  16. S. Q. Bai, Y. Z. Pei, and L. D. Chen, Acta Materialia, 57, 3135 (2009). [DOI: http://dx.doi.org/10.1016/j.actamat.2009.03.018]
  17. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 1 (2007).
  18. L. Zhou, Intermetallics, 32, 209 (2013). [DOI: http://dx.doi.org/10.1016/j.intermet.2012.08.005]
  19. G. Rogl, Intermetallics, 18, 57 (2010). [DOI: http://dx.doi.org/10.1016/j.intermet.2009.06.005]
  20. G. Rogl, Intermetallics, 19, 546 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2010.12.001]
  21. G. Rogl, Acta Materialia, 61, 6778 (2013). [DOI: http://dx.doi.org/10.1016/j.actamat.2013.07.052]
  22. G. Rogl, Intermetallics, 18, 2435 (2010). [DOI: http://dx.doi.org/10.1016/j.intermet.2010.08.041]
  23. J. Yu, J. Electron. Mater., 41, 1414 (2012). https://doi.org/10.1007/s11664-012-2029-2
  24. G. Tan, J. Alloy. Compd., 513, 328 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.10.042]
  25. G. Rogl, Acta Materialia, 76, 434 (2014). [DOI: http://dx.doi.org/10.1016/j.actamat.2014.05.051]
  26. G. J. Tan, J. Electron. Mater., 41, 434 (2012).
  27. C. Zhou, J. Electron. Mater., 41, 1030 (2012). https://doi.org/10.1007/s11664-011-1831-6