과제정보
연구 과제 주관 기관 : National Natural Science Foundations
참고문헌
- Boonyapinyo, V., Yamada, H. and Miyata T. (1994), "Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges", J. Struct. Div. - ASCE, 486-506.
- Boonyapinyo, V., Lauhatanon, Y. and Lukkunaprasit P. (2006), "Nonlinear aerostatic stability analysis of suspension bridges", Eng. Struct., 28(5), 793-803. https://doi.org/10.1016/j.engstruct.2005.10.008
- Cheng, J., Jiang, J.J., Xiao, R.C. and Xiang, H.F. (2002), "Advanced aerostatic stability analysis of cable-stayed bridges using finite-element method", Comput. Struct., 80, 1145-4458. https://doi.org/10.1016/S0045-7949(02)00079-2
- Cheng, J., Jiang, J.J. and Xiao, R.C. (2003), "Aerostatic stability analysis of suspension bridges under parametric uncertainty", Eng. Struct., 25, 1675-1684. https://doi.org/10.1016/S0141-0296(03)00146-9
- Cheng, J., Jiang, J.J., Xiao, R.C. and Xiang, H.F. (2004), "Nonlinear aerostatic stability analysis of Jiangyin suspension bridge", Eng. Struct., 24, 773-781.
- Fu, B., Wang, Z.Y., Zhao, Y. and Yang, L. (2015), "Stochastic optimal control of stayed cable vibrations with wide-band random wind excitation using axial support motion", Adv. Struct. Eng., 18(9), 1535-1550. https://doi.org/10.1260/1369-4332.18.9.1535
- Huang, B., Seresh, R.F. and Zhu, L.P. (2013), "Statistical analysis of basic dynamic characteristics of large span cable-stayed bridge based on high order perturbation stochastic FEM", Adv. Struct. Eng., 16(9), 1499-1512. https://doi.org/10.1260/1369-4332.16.9.1499
- Li, Y.L., Wang, S. and Che, Y.Y. (2014a), "Analysis on aerostatic response for Hong kong-Zhuhai-Macao Great Bridge in construction stage", Appl. Mech. Mat., 455, 220-223.
- Li, Y.L., Wang, D.X., Wu, C.P. and Chen, X.Z. (2014b), "Aerostatic and buffeting response characteristics of catwalk in a long-span suspension bridge", Wind Struct., 19(6), 665-686. https://doi.org/10.12989/was.2014.19.6.665
- Ministry of Transport of the People's Republic of China. (2004), Wind-resistant Design Specification for Highway Bridges ( JTG/T D60-01 -2004), China Communications Press, Beijing, China. (In Chinese)
- Xia, H., Roeck, G.D. and Goicolea, J.M. (2011), Bridge Vibration and Control: New Research, Nova Science Publishers, New York, USA.
- Xu, F.Y. and Chen, A.R. (2009), "Aerostatic response analysis on Sutong Bridge". Eng. Mech., 26 (1), 113-119 (in Chinese).
- Xu F.Y., Chen A.R., Zhang Z. (2013). "Aerostatic wind effects on the Sutong Bridge", Proceedings of the ISDEA 2013, IEEE, Piscataway, USA.
- Wang, X.Y. and Xiong, R. (2011), "Study on wind resistance strategy and stability calculation of a single-span suspension bridge", Appl. Mech. Mat., 90-93, 1082-1086. https://doi.org/10.4028/www.scientific.net/AMM.90-93.1082
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013a), "Nonlinear aerostatic stability analysis of new suspension bridges with multiple main spans", The Brazilian Society of Mech. Sci. Eng., 35, 143-151. https://doi.org/10.1007/s40430-013-0011-4
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013b), "A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind", Wind Struct., 17(5), 553-564. https://doi.org/10.12989/was.2013.17.5.553
- Zhang, X.J. and Yao, M. (2015), "Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges", Wind Struct., 21(4), 407-424. https://doi.org/10.12989/was.2015.21.4.407
- Zhang, J.M. (2015), "Buffeting time-domain analysis and study on wind-resistance measure under construction for super kilometer-span highway-railway steel truss cable-stayed bridge", Master's dissertation, Southwest Jiaotong University, China.
피인용 문헌
- Numerical Study on Aerostatic Instability Modes of the Double-Main-Span Suspension Bridge vol.2018, 2018, https://doi.org/10.1155/2018/7458529
- Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge vol.30, pp.6, 2016, https://doi.org/10.12989/was.2020.30.6.649
- Study on the Effects of Pedestrians on the Aerostatic Response of a Long-Span Pedestrian Suspension Bridge vol.25, pp.10, 2016, https://doi.org/10.1007/s12205-021-2127-x