DOI QR코드

DOI QR Code

Effect of Time-dependent Diffusion and Exterior Conditions on Service Life Considering Deterministic and Probabilistic Method

결정론 및 확률론적 방법에 따라 시간의존성 염화물 확산계수 및 외부 영향인자가 내구수명에 미치는 영향

  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2016.08.22
  • Accepted : 2016.09.27
  • Published : 2016.11.01

Abstract

Service life evaluation for RC Structures exposed to chloride attack is very important, however the previous two methods(deterministic and probabilistic method) show a big difference. The paper presents a service life simulation using deterministic and probabilistic method with time-dependent diffusion coefficient. Three different cases are considered for diffusion coefficient, concrete cover depth, and surface chloride content respectively, and then the PDF(probability of durability failure) and the related service life are obtained. Through adopting time-dependent diffusion, the discrepancy between the two methods can be reduced, which yields reasonable service life. When diffusion coefficient increases from $2.5{\times}10^{-12}m^2/sec$ to $7.5{\times}10^{-12}m^2/sec$, the service life decreases to 25.5~35.6% level, and cover depth does from 75 mm to 125 mm, it increases to 267~311% level as well. In the case of surface chloride content from $5.0kg/m^3$ to $15.0kg/m^3$, it changes to 40.9~54.5%. The effect of cover depth is higher than the others by 8~10 times and also implies it is a key parameter to service life extension.

염해에 콘크리트 구조물의 내구수명 평가는 매우 중요한데, 결정론적 방법 및 확률론적 방법에서 평가된 결과는 큰 차이를 보이고 있다. 본 연구에서는 시간의존형 확산계수와 고정 확산계수를 고려하여 내구수명을 모사하였다. 기본확산계수, 콘크리트 피복두께, 표면염화물량을 3조건으로 분류하여 각 평가방법에 따라 변화하는 내구적 파괴확률과 내구수명을 평가하였다. 시간의존형 확산계수의 도입을 통하여 두 방법 간의 차이를 감소시킬 수 있었으며, 합리적인 해석결과를 유도할 수 있었다. 염화물 확산계수가 $2.5{\times}10^{-12}m^2/sec$에서 $7.5{\times}10^{-12}m^2/sec$으로 증가할 때 내구수명은 25.5~35.6%수준으로 감소하였으며, 피복두께가 75 mm에서 125 mm로 증가할 경우, 267~311%로 내구수명은 증가하였다. 또한 표면염화물량이 $5.0kg/m^3$에서 $15.0kg/m^3$으로 변화할 때, 내구수명은 40.9~54.5% 수준으로 감소하였다. 피복두께의 변화에 따른 내구수명의 변화는 기본확산계수 및 표면염화물에 비하여 8~10배정도 크게 평가되었으며 내구수명 확보를 위한 중요한 인자임을 알 수 있다.

Keywords

References

  1. Alonso, C., Castellote, M., and Andrade, C. (2002), Chloride Threshold Dependence of Pitting Potential of Reinforcements. Electrochemica Acta, 47(21), 3469-3481. https://doi.org/10.1016/S0013-4686(02)00283-9
  2. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  3. CEB (1997), New Approach to Durability Design, 29-43.
  4. Chung, L., Jay Kim, J. H., and Yi, S. T. (2008), Bond Strength Prediction for Reinforced Concrete Members with Highly Corroded Reinforcing Bars. Cement and Concrete Composites, 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006
  5. DuraCrete Final Report (2000), DuraCrete Probabilistic Performance Based Durability Design of Concrete Structures.
  6. EN 1991 (2000), Eurocode 1-Basis of Design and Actions on Structures.
  7. Ferreira, M., Arskog, V., Jalali, S., and Gjorv, O. E. (2004), Probability-Based Durability Analysis of Concrete Harbor Structures, Proceedings of CONSEC04, 999-1006.
  8. Hakan, Y., Ozgur, E., and Serhan, S. (2012), An Experimental Study on the Bond Strength between Reinforcement Bars and Concrete as a Function of Concrete Cover, Strength and Corrosion Level, Cement and Concrete Research, 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003
  9. Hussain, S. E., Rasheeduzafar, S., Al-Musallam, A., and Al-Gahtani, A. S. (1995), Factors Affecting Threshold Chloride for Reinforcement Corrosion in Concrete, Cement and Concrete Research, 25(7), 1543-1555. https://doi.org/10.1016/0008-8846(95)00148-6
  10. JSCE (2002), Standard Specification for Concrete Structures, Japan Society of Civil Engineers.
  11. JSCE (2007), Standard Specifications and Guidelines, Japan Society of Civil Engineers.
  12. KCI (2012), Concrete Standard Specification Durability Part, Korea Concrete Institute.
  13. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H. (2009), Service Life Prediction of Concrete Wharves with Early-aged Crack: Probabilistic Approach for Chloride Diffusion, Structure and Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  14. Lee, S. H., and Kwon, S. J. (2012), Experimental Study on the Relationship between Time-Dependent Chloride Diffusion Coefficient and Compressive Strength, Journal of the Korea Concrete Institute, 24(6), 715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  15. Maekawa, K., Ishida, T., and Kishi, T. (2003), Multi-Scale Modeling of Concrete Performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  16. Poulsen, E. (1993), On a Model of Chloride Ingress into Concrete, Nordic Miniseminar-Chloride Transport, Department of Building Materials, Gothenburg.
  17. RILEM (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  18. Song, H. W., Pack, S. W., and Ann, K. Y. (2009), Probabilistic Assessment to Predict the Time to Corrosion of Steel in Reinforced Concrete Tunnel Box Exposed to Sea Water, Construction and Building Materials, 23(10), 3270-3278. https://doi.org/10.1016/j.conbuildmat.2009.05.007
  19. Song, H. W., Pack, S. W., Lee, C. H., and Kwon, S. J. (2006), Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, Journal of Restoration Building and Monuments, 12(4), 265-284.
  20. Tang, L., and Joost, G. (2007), On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete, Cement and Concrete Research, 37(4), 589-595. https://doi.org/10.1016/j.cemconres.2007.01.006
  21. Thomas, M. D. A., and Bamforth, P. B. (1999), Modeling Chloride Diffusion in Concrete: Effect of Fly ash and Slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  22. Thomas, M. D. A., and Bentz, E. C. (2002), Life-$365^{TM}$ Service Life Prediction $Model^{TM}$ and Computer program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides, SFA, 2-28.

Cited by

  1. 1년 양생 조건의 Fly Ash를 혼입한 고성능 콘크리트의 시간의존적 염해저항성 평가 vol.22, pp.4, 2018, https://doi.org/10.11112/jksmi.2018.22.4.052