References
- Aicher, T. D., Buszek, K. R., Fang, F. G., Forsyth, C. J., Jung, S. H., Kishi, Y., Matelich, M. C., Scola, P. M., Spero, D. M. and Yoon, S. K. (1992) Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc. 114, 3162-3164. https://doi.org/10.1021/ja00034a086
- Anjum, K., Abbas, S. Q., Shah, S. A., Akhter, N., Batool, S. and Hassan, S. S. (2016) Marine sponges as drug treasure. Biomol.Ther. (Seoul) 24, 347-362. https://doi.org/10.4062/biomolther.2016.067
- Ansell, S. M. (2011) Brentuximabvedotin: delivering an antimitotic drug to activated lymphoma cells. Expert Opin. Investig. Drugs 20, 99-105. https://doi.org/10.1517/13543784.2011.542147
- Bane, V., Lehane, M., Dikshit, M., O'Riordan, A. and Furey, A. (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins 6, 693-755. https://doi.org/10.3390/toxins6020693
- Bergmann, W. and Burke, D. C. (1955) Marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J. Org. Chem. 20, 1501-1507. https://doi.org/10.1021/jo01128a007
- Bergmann, W. and Feeney, R. J. (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges. J. Org. Chem. 16, 981-987. https://doi.org/10.1021/jo01146a023
- Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. and Prinsep, M. R. (2016) Marine natural products. Nat. Prod. Rep. 33, 382-431. https://doi.org/10.1039/C5NP00156K
- Bogdanov, A. M., Mishin, A. S., Yampolsky, I. V., Belousov, V. V., Chudakov, D. M., Subach, F. V., Verkhusha, W., Lukyanov, S. and Lukyanov, K. A. (2009) Green fluorescent proteins are light-induced electron donors. Nat. Chem. Biol. 5, 459-461. https://doi.org/10.1038/nchembio.174
- Bongiorni, L. and Pietra, F. (1996) Marine natural products for industrial applications. Chem. Ind. 2, 54-58.
- Brandon, E. F., Sparidans, R. W., Guijt, K. J., Lowenthal, S., Meijerman, I., Beijnen, J. H. and Schellens, J. H. (2006) In vitro characterization of the human biotransformation and CYP reaction phenotype of ET-743 (Yondelis, Trabectedin), a novel marine anti-cancer drug. Invest. New Drugs 24, 3-14. https://doi.org/10.1007/s10637-005-4538-9
- Burgess, J. G. (2012) New and emerging analytical techniques for marine biotechnology. Curr. Opin. Biotechnol. 23, 29-33. https://doi.org/10.1016/j.copbio.2011.12.007
- Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. and Schnetzer, A. (2012) Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467-493. https://doi.org/10.1146/annurev-marine-120709-142802
- Carter, N. J. and Keam, S. J. (2010) Trabectedin: a review of its use in soft tissue sarcoma and ovarian cancer. Drugs 70, 355-376.
- Census of marine life [Internet] Office of Marine Programs, University of Rhode Island, Graduate School of Oceanography; c2010 [cited 2016 Aug 03]. Available from: http://www.coml.org/.
- Cheung, R. C., Ng, T. B., Wong, J. H., Chen, Y. C. and Chan, W. Y. (2016) Marine natural products with anti-inflammatory activity. Appl. Microbiol. Biotechnol. 100, 1645-1666. https://doi.org/10.1007/s00253-015-7244-3
- Chini Zitelli, G., Lavista, F., Bastianini, A., Rodolfi, L., Vincenzini, M. and Tredici, M. R. (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J. Biotechnol. 70, 299-312. https://doi.org/10.1016/S0168-1656(99)00082-6
- Cline, J., Braman, J. C. and Hogrefe, H. H. (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546-3551. https://doi.org/10.1093/nar/24.18.3546
- Council of Europe (2014) European Pharmacopoeia (Ph. Eur.) (8th edition). Council of Europe.
- Cuevas, C. and Francesch, A. (2009) Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26, 322-337. https://doi.org/10.1039/b808331m
- Debbab, A., Aly, A. H., Lin, W. H. and Proksch, P. (2010) Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 3, 544-563. https://doi.org/10.1111/j.1751-7915.2010.00179.x
- Deng, C., Pan, B. and O'Connor, O. A. (2013) Brentuximab Vedotin. Clin. Cancer Res. 19, 22-27. https://doi.org/10.1158/1078-0432.CCR-12-0290
- Doronina, S. O., Mendelsohn, B. A., Bovee, T. D., Cerveny, C. G., Alley, S. C., Meyer, D. L., Oflazoglu, E., Toki, B. E., Sanderson, R. J., Zabinski, R. F., Wahl, A. F. and Senter, P. D. (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114-124. https://doi.org/10.1021/bc0502917
- D'Incalci, M., Badri, N., Galmarini, C.M. and Allavena, P. (2014) Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br. J. Cancer 111, 646-650. https://doi.org/10.1038/bjc.2014.149
- Engene, N., Tronholm, A., Salvador-Reyes, L. A., Luesch, H. and Paul, V. J. (2015) Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J. Phycol. 51, 670-681. https://doi.org/10.1111/jpy.12309
- Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. and Schmidt, E. W. (2000) Symbiotic bacteria in sponges: sources of bioactive substances. In Drugs from the Sea (N. Fusetani, Ed.), pp. 107-119. Karger, Basel.
- Fenical, W., Jensen, P. R., Palladino, M. A., Lam, K. S., Lloyd, G. K. and Potts, B. C. (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg. Med. Chem. 17, 2175-2180. https://doi.org/10.1016/j.bmc.2008.10.075
- Fromm, J. R., McEarchem, J. A., Kennedy, D., Thomas, A., Shustov, A. R. and Gopal, A. K. (2012) Clinical binding properties, internalization kinetics, and clinic-pathological activity of brentuximab vedotin: an antibody-drug conjugate for CD30-positive lymphoid neoplasms. Clin. Lymphoma Myeloma Leuk. 12, 280-283. https://doi.org/10.1016/j.clml.2012.01.012
- Garnock-Jones, K. P. (2013) Brentuximab vedotin: a review of its use in patients with Hodgkin lymphoma and systemic anaplastic large cell lymphoma following previous treatment failure. Drugs 73, 371-381. https://doi.org/10.1007/s40265-013-0031-5
- Giddings, L. A. and Newman, D. J. (2013) Microbial natural products: molecular blue-prints for antitumor drugs. J. Ind. Microbiol. Biotechnol. 40, 1181-1210. https://doi.org/10.1007/s10295-013-1331-1
- Gross, H. (2009) Genomic mining - a concept for the discovery of new bioactive natural products. Curr. Opin. Drug Discov. Devel. 12, 207-219.
- Grosso, F., D'Incalci, M., Cartaoafa, M., Nieto, A., Fernandez-Teruel, C., Alfaro, V., Lardelli, P., Roy, E., Gomez, J., Kahatt, C., Soto-Matos, A. and Judson, I. (2012) A comprehensive safety analysis confirms rhabdomyolysis as an uncommon adverse reaction in patients treated with trabectedin. Cancer Chemother. Pharmacol. 69, 1557-1565. https://doi.org/10.1007/s00280-012-1864-4
- Harris, J. R. and Markl, J. (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30, 597-623. https://doi.org/10.1016/S0968-4328(99)00036-0
- Hart, J. B., Lill, R. E., Hickford, S. J. H., Blunt, J. W. and Munro, M. H. G. (2000) The halichondrins: chemistry, biology, supply and delivery. In Drugs from the Sea (N. Fusetani, Ed.), pp. 134-153. Karger, Basel.
- Hill, R. T. and Fenical, W. (2010) Pharmaceuticals from marine natural products: surge or ebb? Curr. Opin. Biotechnol. 21, 777-779. https://doi.org/10.1016/j.copbio.2010.10.007
- Hu, G. P., Yuan, J., Sun, L., She, Z. G., Wu, J. H., Lan, X. J., Zhu, X., Lin, Y. C. and Chen, S. P. (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 9, 514-525. https://doi.org/10.3390/md9040514
- Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y., Chen, S. and Yuan, J. (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 13, 202-221. https://doi.org/10.3390/md13010202
- Jensen, P. R. and Fenical, W. (2000) Marine microorganisms and drug discovery: current status and future potential. In Drugs from the Sea (N. Fusetani, Ed.), pp. 6-29. Karger, Basel.
- Kamat, P. K., Rai, S., Swarnkar, S., Shukla, R. and Nath, C. (2014) Molecular and cellular mechanisms of okadaic acid (OKA)-induced neurotoxicity: a novel tool of Alzheimer's disease therapeutic application. Mol. Neurobiol. 50, 852-865. https://doi.org/10.1007/s12035-014-8699-4
- Kiuru, P., D'Auria, M. V., Muller, C. D., Tammela, P., Vuorela, H. and Yli-Kauhaluoma, J. (2014) Exploring marine resources for bioactive compounds. Planta Med. 80, 1234-1246. https://doi.org/10.1055/s-0034-1383001
- Klotz, U. (2006) Ziconotide - a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain - a short review. Int. J. Clin. Pharmacol. Ther. 44, 478-483. https://doi.org/10.5414/CPP44478
- Koski, R. R. (2008) Omega-3-acid ethyl esters (lovaza) for severe hypertriglyceridemia. P T 33, 271-303.
- Konig, G. M. (1992) Meeresorganismen als Quelle pharmazeutisch bedeutsamer Naturstoffe. Dtsch. Apoth. Ztg. 132, 673-683.
- Leal, M. C., Madeira, C., Brandao, C. A., Puga, J. and Calado, R. (2012) Bioprospecting of marine invertebrates for new natural products - a chemical and zoogeographical perspective. Molecules 17, 9842-9854. https://doi.org/10.3390/molecules17089842
- Li, X. and Qin, L. (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 23, 539-543. https://doi.org/10.1016/j.tibtech.2005.08.006
- Lindequist, U. and Schweder, T. (2001) Marine Biotechnology. In Biotechnology, Vol. 10: Special processes (H. J. Rehm, Ed.), pp. 441-484. Wiley-VCH, Weinheim.
- Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. and Corbett, T. H. (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod. 64, 907-910. https://doi.org/10.1021/np010049y
- Lopez-Guerrero, J. A., Romero, I. and Poveda, A. (2015) Trabectedin therapy as an emerging treatment strategy for recurrent platinum-sensitive ovarian cancer. Chin. J. Cancer 34, 41-49.
- Lowenberg, B. (2013) Sense and nonsense of high-dose cyatarabine for acute myeloid leukemia. Blood 121, 26-28. https://doi.org/10.1182/blood-2012-07-444851
- Marmann, A., Aly, A. H., Lin, W., Wang, B. and Proksch, P. (2014) Co-cultivation - a powerful emerging tool for enhancing the chemical diversity of micororganisms. Mar. Drugs 12, 1043-1065. https://doi.org/10.3390/md12021043
- Martins, A., Vieira, H., Gaspar, H. and Santos, S. (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs 12, 1066-1101. https://doi.org/10.3390/md12021066
- Maruzzo, M., Brunello, A., Diminutto, A., Rastrelli, M. and Basso, U. (2016) Long-term response to first-line trabectedin in an elderly female patient with a metastatic leiomyosarcoma unfit for anthracycline. Anticancer Drugs 27, 264-267. https://doi.org/10.1097/CAD.0000000000000326
- Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C. and Shuster, D. E. (2010) The odyssee of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol. Sci. 31, 255-265. https://doi.org/10.1016/j.tips.2010.02.005
- Mayer, A. M. S. (2016) Marine pharmaceuticals: the clinical pipeline. [cited 2016 Aug 01] Available from: http://marinepharmacology.midwestern.edu/clinPipeline.htm/.
- Mendola, D. (2000) Aquacultural production of bryostatin 1 and ecteinascidin 743. In Drugs from the Sea (N. Fusetani, Ed.), pp. 120-133. Karger, Basel.
- Miljanich, G. P. (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029-3040. https://doi.org/10.2174/0929867043363884
- Mocz, G. (2007) Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mar. Biotechnol. 9, 305-328. https://doi.org/10.1007/s10126-006-7145-7
- Molinski, T. F., Dalisay, D. S., Lievens, S. L. and Saludes, J. P. (2009) Drug development from marine natural products. Nat. Rev. Drug Discov. 8, 69-85. https://doi.org/10.1038/nrd2487
- Morris, P. G. (2010) Advances in therapy: eribulin improves survival for metastatic breast cancer. Anticancer Drugs 21, 885-889. https://doi.org/10.1097/CAD.0b013e32833ed62e
- Mullis, K. B. and Falcona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain-reaction. Meth. Enzymol. 155, 335-350. https://doi.org/10.1016/0076-6879(87)55023-6
- Mutschler, E., Geisslinger, G., Menzel, S., Ruth, P. and Schmidtko, A. (2016) Pharmakologie kompakt: Allgemeine und Klinische Pharmakologie, Toxikologie. Wissenschaftliche Verlagsgesellschaft Stuttgart. German.
- Newman, D. J. and Cragg, G. M. (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216-1238. https://doi.org/10.1021/np040031y
- Newman, D. J. and Cragg, G. M. (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 12, 255-278. https://doi.org/10.3390/md12010255
- Newman, D. J. and Cragg, G. M. (2016) Drugs and drug candidates from marine sources: an assessment of the current "state of play". Planta Med. 82, 775-789. https://doi.org/10.1055/s-0042-101353
- Olivera, B. M., Gray, W. R., Zeikus, R., McIntosh, J. M., Varga, J., Rivier, J., DeSantos, V. and Cruz, L. J. (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338-1343. https://doi.org/10.1126/science.4071055
- Pean, E., Klaar, S., Berglund, E. G., Salmonson, T., Borregaard, J., Hofland, K. F., Ersboll, J., Abadie, E., Giuliani, R. and Pignatti, F. (2012) The European medicines agency review of eribulin for the treatment of patients with locally advanced or metastatic breast cancer: summary of the scientific assessment of the committee for medicinal products for human use. Clin. Cancer Res. 18, 4491-4497. https://doi.org/10.1158/1078-0432.CCR-11-3075
- Pro, B., Advani, R., Brice, P., Bartlett, N. L., Rosenblatt, J. D., Illidge, T., Matous, J., Ramchandren, R., Fanale, M., Connors, J. M., Yang, Y., Sievers, E. L., Kennedy, D. A. and Shustov, A. (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190-2196. https://doi.org/10.1200/JCO.2011.38.0402
- Proksch, P., Putz, A., Ortlepp, S., Kjer, J. and Bayer, M. (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 9, 475-489. https://doi.org/10.1007/s11101-010-9178-9
- Perez-Victoria, I., Martin, J. and Reyes, F. (2016) Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med. 82, 857-871. https://doi.org/10.1055/s-0042-101763
- Radjasa, O. K., Vaske, Y. M., Navarro, G., Vervoort, H. C., Tenney, K., Linington, R. G. and Crews, P. (2011) Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Bioorg. Med. Chem. 19, 6658-6674. https://doi.org/10.1016/j.bmc.2011.07.017
- Ramasamy, M. S., Arumugam, P., Manikandan, S. and Murugan, A. (2011) Molecular and combinatorial array of therapeutic targets from conotoxins. Am. J. Drug Discovery Dev. 1, 49-57. https://doi.org/10.3923/ajdd.2011.49.57
- Sagar, S., Kaur, M. and Mineman, K. P. (2010) Antiviral lead compounds from marine sponges. Mar. Drugs 8, 2619-2638. https://doi.org/10.3390/md8102619
- Schofield, M. M., Jain, S., Porat, D., Dick, G. J. and Sherman, D. H. (2015) Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol. 17, 3964-3975. https://doi.org/10.1111/1462-2920.12908
- Schweder, T., Lindequist, U. and Lalk, M. (2005) Screening for new metabolites from marine microorganisms. In Advances in Biochemical Engineering/Biotechnology, Vol. 96: Marine Biotechnology (Y. LeGal and R. Ulber, Eds.), pp. 1-48. Springer, Berlin, Heidelberg.
- Shimomura, O. (2009) Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew. Chem. Int. Ed. Engl. 48, 5590-5602. https://doi.org/10.1002/anie.200902240
- Skropeta, D. (2008) Deep-sea natural products. Nat. Prod. Rep. 25, 1131-1166. https://doi.org/10.1039/b808743a
- Smith, J. A., Wilson, L., Azarenko, O., Zhu, X., Lewis, B. M., Littlefield, B. A. and Jordan, M. A. (2010) Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 49, 1331-1337. https://doi.org/10.1021/bi901810u
- Snelgrove, P. V. (2016) An ocean of discovery: biodiversity beyond the Census of Marine Life. Planta Med. 82, 790-799. https://doi.org/10.1055/s-0042-103934
- Suleria, H. A., Osborne, S., Masci, P. and Gobe, G. (2015) Marinebased nutraceuticals: an innovative trend in the food and supplement industries. Mar. Drugs 13, 6336-6351. https://doi.org/10.3390/md13106336
- Sutherland, M. S., Sanderson, R. J., Gordon, K. A., Andreyka, J., Cerveny, C. G., Yu, C., Lewis, T. S., Meyer, D. L., Zabinski, R. F., Doronina, S. O., Senter, P. D., Law, C. L. and Wahl, A. F. (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem. 281, 10540-10547. https://doi.org/10.1074/jbc.M510026200
- Takeyama, H., Takeda, D., Yazawa, K., Yamada, A. and Matsunaga, T. (1997) Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143, 2725-2731. https://doi.org/10.1099/00221287-143-8-2725
- Tarman, K., Lindequist, U. and Mundt, S. (2013) Metabolites of marine microorganisms and their pharmacological activities. In Marine Microbiology: Bioactive Compounds and Biotechnological Applications (S. K. Kim, Ed.), pp. 393-415. Wiley-VCH, Weinheim.
- Terlau, H. and Olivera, B. M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41-68. https://doi.org/10.1152/physrev.00020.2003
- Teuscher, E. and Lindequist, U. (2010) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart. German.
- Thomas, N. V. and Kim, S. K. (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 11, 146-164. https://doi.org/10.3390/md11010146
- Weinheimer, A. J. and Spraggins, R. L. (1969) The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla chemistry of coelenterates. XV. Tetrahedron Lett. 10, 5185-5188. https://doi.org/10.1016/S0040-4039(01)88918-8
- Witte, A. V., Kerti, L., Hermannstadter, H. M., Fiebach, J. B., Schreiber, S. J., Schuchardt, J. P., Hahn, A. and Floel, A. (2014) Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 24, 3059-3068. https://doi.org/10.1093/cercor/bht163
- World Register of Marine Species [Internet] WoRMS Editorial Board; 2016 [cited 2016 Aug 03]. Available from: http://www.marinespecies.org/.
- Wu, C. H. (2009) Palytoxin: membrane mechanisms of action. Toxicon 54, 1183-1189. https://doi.org/10.1016/j.toxicon.2009.02.030
- Younes, A., Gopal, A. K., Smith, S. E., Ansell, S. M., Rosenblatt, J. D., Savage, K. J., Ramchandren, R., Bartlett, N. L., Cheson, B. D., de Vos, S., Forero-Torres, A., Moskowitz, C. H., Connors, J. M., Engert, A., Larsen, E. K., Kennedy, D. A., Sievers, E. L. and Chen, R. (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183-2189. https://doi.org/10.1200/JCO.2011.38.0410
Cited by
- Natural products for human health: an historical overview of the drug discovery approaches 2018, https://doi.org/10.1080/14786419.2017.1356838
- Recent Advances in the Isolation, Synthesis and Biological Activity of Marine Guanidine Alkaloids vol.15, pp.10, 2017, https://doi.org/10.3390/md15100324
- Marine-Derived Penicillium Species as Producers of Cytotoxic Metabolites vol.15, pp.10, 2017, https://doi.org/10.3390/md15100329
- Bioactive Peptides from Marine Ascidians and Future Drug Development–A Review vol.24, pp.1, 2018, https://doi.org/10.1007/s10989-017-9662-9
- The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry, Industrial and Pharmaceutical Biotechnology vol.16, pp.6, 2018, https://doi.org/10.3390/md16060207
- Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds vol.16, pp.5, 2018, https://doi.org/10.3390/md16050160
- Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives pp.00207136, 2019, https://doi.org/10.1002/ijc.31965
- Two Isospongian Diterpenes from the Sponge Luffariella sp vol.12, pp.7, 2016, https://doi.org/10.1177/1934578x1701200702
- Marine sponge microbial association: Towards disclosing unique symbiotic interactions vol.140, pp.None, 2018, https://doi.org/10.1016/j.marenvres.2018.04.017
- The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds vol.54, pp.4, 2018, https://doi.org/10.7845/kjm.2018.8069
- Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020243
- Diversity, Ecology, and Prevalence of Antimicrobials in Nature vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.02518
- Marine natural products as source of new drugs: a patent review (2015-2018) vol.29, pp.4, 2016, https://doi.org/10.1080/13543776.2019.1598972
- Marine-Derived Natural Lead Compound Disulfide-Linked Dimer Psammaplin A: Biological Activity and Structural Modification vol.17, pp.7, 2016, https://doi.org/10.3390/md17070384
- Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products vol.17, pp.8, 2016, https://doi.org/10.3390/md17080468
- Design and Synthesis of Anti-Cancer Chimera Molecules Based on Marine Natural Products vol.17, pp.9, 2016, https://doi.org/10.3390/md17090500
- Structural characterization of novel comb-like branched α-D-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo vol.10, pp.10, 2016, https://doi.org/10.1039/c9fo01395d
- Bright Spots in The Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action vol.17, pp.11, 2016, https://doi.org/10.3390/md17110617
- A Review on Molecular Mechanisms and Patents of Marine-derived Anti-thrombotic Agents vol.21, pp.None, 2016, https://doi.org/10.2174/1389450121666201020151927
- Marine Bioresource Development - Stakeholder’s Challenges, Implementable Actions, and Business Models vol.7, pp.None, 2016, https://doi.org/10.3389/fmars.2020.00062
- A New Network for the Advancement of Marine Biotechnology in Europe and Beyond vol.7, pp.None, 2016, https://doi.org/10.3389/fmars.2020.00278
- Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities vol.7, pp.None, 2016, https://doi.org/10.3389/fmars.2020.00528
- Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes vol.77, pp.4, 2016, https://doi.org/10.1007/s00284-019-01698-5
- Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria vol.18, pp.4, 2016, https://doi.org/10.3390/md18040187
- Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana vol.30, pp.4, 2016, https://doi.org/10.4014/jmb.1907.07030
- Collective Locomotion of Human Cells, Wound Healing and Their Control by Extracts and Isolated Compounds from Marine Invertebrates vol.25, pp.11, 2016, https://doi.org/10.3390/molecules25112471
- Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates vol.73, pp.8, 2016, https://doi.org/10.1038/s41429-020-0330-5
- Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations vol.17, pp.4, 2016, https://doi.org/10.2174/1570163816666190819141344
- Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection vol.21, pp.21, 2016, https://doi.org/10.3390/ijms21218364
- Microbial Activity in Subterranean Ecosystems: Recent Advances vol.10, pp.22, 2016, https://doi.org/10.3390/app10228130
- Nanoliposomal Cercodemasoide A and Its Improved Activities Against NTERA-2 Cancer Stem Cells vol.15, pp.12, 2016, https://doi.org/10.1177/1934578x20982108
- Utilization of Shrimp waste as a novel media for marine bacteria isolation vol.11, pp.1, 2016, https://doi.org/10.1007/s13205-020-02564-z
- Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy vol.19, pp.1, 2016, https://doi.org/10.3390/md19010015
- Drug Development from Peptide-derived Marine Natural Products vol.1011, pp.None, 2021, https://doi.org/10.1088/1757-899x/1011/1/012063
- Bioactivity and Biotechnological Overview of Naturally Occurring Compounds from the Dinoflagellate Family Symbiodiniaceae: A Systematic Review vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1983589
- An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2 vol.19, pp.None, 2016, https://doi.org/10.1016/j.csbj.2021.08.036
- Marine-derived drugs: Recent advances in cancer therapy and immune signaling vol.134, pp.None, 2016, https://doi.org/10.1016/j.biopha.2020.111091
- Bioactivity Screening and Gene-Trait Matching across Marine Sponge-Associated Bacteria vol.19, pp.2, 2016, https://doi.org/10.3390/md19020075
- 1,2,4‐Oxadiazole Topsentin Analogs with Antiproliferative Activity against Pancreatic Cancer Cells, Targeting GSK3β Kinase vol.16, pp.3, 2021, https://doi.org/10.1002/cmdc.202000752
- Field-Template, QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease Inhibitors vol.26, pp.4, 2016, https://doi.org/10.3390/molecules26040936
- Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research vol.19, pp.3, 2016, https://doi.org/10.3390/md19030122
- Marine sponge-derived/inspired drugs and their applications in drug delivery systems vol.13, pp.5, 2016, https://doi.org/10.4155/fmc-2020-0123
- Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer Elimination and Reversing Chemoresistance vol.13, pp.7, 2021, https://doi.org/10.3390/cancers13071602
- Antiplasmodial Compounds from Deep-Water Marine Invertebrates vol.19, pp.4, 2016, https://doi.org/10.3390/md19040179
- Anti-Alzheimer’s Molecules Derived from Marine Life: Understanding Molecular Mechanisms and Therapeutic Potential vol.19, pp.5, 2016, https://doi.org/10.3390/md19050251
- Promising Activities of Marine Natural Products against Hematopoietic Malignancies vol.9, pp.6, 2021, https://doi.org/10.3390/biomedicines9060645
- Genome sequence of Aspergillus flavus A7, a marine-derived fungus with antibacterial activity vol.64, pp.7, 2016, https://doi.org/10.1139/gen-2020-0066
- Exploitation of Marine Molecules to Manage Alzheimer’s Disease vol.19, pp.7, 2016, https://doi.org/10.3390/md19070373
- Marine Natural Products as Anticancer Agents vol.19, pp.8, 2016, https://doi.org/10.3390/md19080447
- Potential role of marine species-derived bioactive agents in the management of SARS-CoV-2 infection vol.16, pp.16, 2016, https://doi.org/10.2217/fmb-2021-0024
- Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28 vol.19, pp.11, 2021, https://doi.org/10.3390/md19110613
- Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities vol.19, pp.11, 2016, https://doi.org/10.3390/md19110645
- Three Novel Bacteria Associated with Two Centric Diatom Species from the Mediterranean Sea, Thalassiosira rotula and Skeletonema marinoi vol.22, pp.24, 2016, https://doi.org/10.3390/ijms222413199
- From Life in the Sea to the Clinic: The Marine Drugs Approved and under Clinical Trial vol.11, pp.12, 2016, https://doi.org/10.3390/life11121390
- 갯벌 방선균 유래 Boholamide A의 구조 및 생리활성에 대한 연구 vol.52, pp.4, 2016, https://doi.org/10.22889/kjp.2021.52.4.203
- Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses vol.14, pp.1, 2016, https://doi.org/10.3390/v14010035
- Resonance Raman and SERRS of fucoxanthin: Prospects for carotenoid quantification in live diatom cells vol.1250, pp.p1, 2016, https://doi.org/10.1016/j.molstruc.2021.131608