DOI QR코드

DOI QR Code

DETERMINATION OF THE FRICKE FAMILIES

  • Eum, Ick Sun (School of Mathematics Korea Institute for Advanced Study) ;
  • Shin, Dong Hwa (Department of Mathematics Hankuk University of Foreign Studies)
  • Received : 2015.09.22
  • Published : 2016.11.01

Abstract

For a positive integer N divisible by 4, let ${\mathcal{O}}^1_N({\mathbb{Q}})$ be the ring of weakly holomorphic modular functions for the congruence subgroup ${\Gamma}^1(N)$ with rational Fourier coefficients. We present explicit generators of the ring ${\mathcal{O}}^1_N({\mathbb{Q}})$ over ${\mathbb{Q}}$ in terms of both Fricke functions and Siegel functions, from which we are able to classify all Fricke families of such level N.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. D. A. Cox, Primes of the form $x^2$+${ny}^2$, Fermat, Class Field, and Complex Multiplication, John Wiley & Sons, Inc., New York, 1989.
  2. I. S. Eum, J. K. Koo, and D. H. Shin, Some appliations of modular units, Proc. Edinburgh Math. Soc. (2) 59 (2016), no. 1, 91-106.
  3. H. Y. Jung, J. K. Koo, and D. H. Shin, Normal bases of ray class fields over imaginary quadratic fields, Math. Z. 271 (2012), no. 1-2, 109-116. https://doi.org/10.1007/s00209-011-0854-2
  4. H. Y. Jung, J. K. Koo, and D. H. Shin, On some Fricke families and application to the Lang-Schertz conjecture, Proc. Royal Soc. Edinburgh Sect. A 146 (2016), no. 4, 723-740. https://doi.org/10.1017/S0308210515000608
  5. C. H. Kim and J. K. Koo, Arithmetic of the modular function $j_{1,4}$, Acta Arith. 84 (1998), no. 2, 129-143. https://doi.org/10.4064/aa-84-2-129-143
  6. J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. https://doi.org/10.1007/s00209-008-0456-9
  7. D. S. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
  8. S. Lang, Elliptic Functions, 2nd edn, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
  9. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, NJ, 1971.