DOI QR코드

DOI QR Code

A NEW QUASI-NEWTON METHOD BASED ON ADJOINT BROYDEN UPDATES FOR SYMMETRIC NONLINEAR EQUATIONS

  • Cao, Huiping (College of Mathematics and Econometrics Hunan University)
  • 투고 : 2015.09.05
  • 발행 : 2016.11.01

초록

In this paper, we propose a new rank two quasi-Newton method based on adjoint Broyden updates for solving symmetric nonlinear equations, which can be seen as a class of adjoint BFGS method. The new rank two quasi-Newton update not only can guarantee that $B_{k+1}$ approximates Jacobian $F^{\prime}(x_{k+1})$ along direction $s_k$ exactly, but also shares some nice properties such as positive deniteness and least change property with BFGS method. Under suitable conditions, the proposed method converges globally and superlinearly. Some preliminary numerical results are reported to show that the proposed method is effective and competitive.

키워드

참고문헌

  1. P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim. 4 (1994), no. 2, 297-330. https://doi.org/10.1137/0804017
  2. R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal. 26 (1989), no. 3, 727-739. https://doi.org/10.1137/0726042
  3. Y. H. Dai, Convergence properties of the BFGS algorithm, SIAM J. Optim. 13 (2002), no. 3, 693-701. https://doi.org/10.1137/S1052623401383455
  4. E. D. Dolan and J. J. More, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), no. 2, 201-213. https://doi.org/10.1007/s101070100263
  5. R. Fletcher, A new variational result for quasi-Newton formulae, SIAM J. Optim. 1 (1991), no. 1, 18-21. https://doi.org/10.1137/0801002
  6. R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley & Sons, 2013.
  7. A. Griewank, The "global" convergence of Broyden-like methods with a suitable line search, J. Aust. Math. Soc. Ser. B 28 (1986), no. 1, 75-92. https://doi.org/10.1017/S0334270000005208
  8. G. Z. Gu, D. H. Li, L. Qi, et al., Descent directions of quasi-Newton methods for symmetric nonlinear equations, SIAM J. Numer. Anal. 40 (2002), no. 5, 1763-1774. https://doi.org/10.1137/S0036142901397423
  9. D. H. Li and W. Y. Cheng, Recent progress in the global convergence of quasi-Newton methods for nonlinear equations, Hokkaido Math. J. 36 (2007), no. 4, 729-743. https://doi.org/10.14492/hokmj/1272848030
  10. D. H. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal. 37 (1999), no. 1, 152-172. https://doi.org/10.1137/S0036142998335704
  11. D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Algebra Control Optim. 1 (2011), no. 1, 71-82. https://doi.org/10.3934/naco.2011.1.71
  12. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, SIAM, Academic Press, 1970.
  13. S. Schlenkrich, A. Griewank, and A. Walther, On the local convergence of adjoint Broyden methods, Math. Program. 121 (2010), no. 2, 221-247. https://doi.org/10.1007/s10107-008-0232-y
  14. S. Schlenkrich and A. Walther, Global convergence of quasi-Newton methods based on adjoint Broyden updates, Appl. Numer. Math. 59 (2009), no. 5, 1120-1136. https://doi.org/10.1016/j.apnum.2008.05.007
  15. E. Yamakawa and M. Fukushima, Testing parallel variable transformation, Comput. Optim. Appl. 13 (1999), no. 1-3, 253-274. https://doi.org/10.1023/A:1008629511432
  16. G. L. Yuan and S. W. Yao, A BFGS algorithm for solving symmetric nonlinear equations, Optimization. 62 (2013), no. 1, 85-99. https://doi.org/10.1080/02331934.2011.564621
  17. L. Zhang, W. J. Zhou, and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math. 104 (2006), no. 4, 561-572. https://doi.org/10.1007/s00211-006-0028-z
  18. W. J. Zhou and D. M. Shen, An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim. 35 (2014), no. 3, 370-388. https://doi.org/10.1080/01630563.2013.871290