References
- M. S. Asgari and H. Rahimi, Generalized frames for operators in Hilbert Spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17 (2014), no. 2, 1450013, 20 pp.
- H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process. 46 (1998), 3256-3268. https://doi.org/10.1109/78.735301
-
E. J. Candes and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise
$C^2$ singularities, Comm. Pure. Appl. Math. 57 (2004), no. 2, 219-266. https://doi.org/10.1002/cpa.10116 - O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
- I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283. https://doi.org/10.1063/1.527388
- M. Ding, X. Xiao, and Y. Zhu, K-frames in Hilbert Spaces, Acta Math. Sinica (Chin. Ser.) 57 (2014), no. 6, 1089-1100.
- R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. https://doi.org/10.1090/S0002-9939-1966-0203464-1
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- L. Gavruta, Perturbation of K-frames, Bul. Stiint Univ. Politeh. Timis. Ser. Mat. Fiz. Tom. 56(70) (2011), no. 2, 48-53.
- L. Gavruta, New results on frames for operators, Proc. Intern. Conf. Sciences, 2011(Accepted).
- L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), no. 1, 139-144. https://doi.org/10.1016/j.acha.2011.07.006
- P. G. Gazassa and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543-557. https://doi.org/10.1007/BF02648883
-
K. K. Hyun, L. D. Gwan, and Y. G. Joon, Generating new frames in
$L^2$ (R) by convdutions, J. Korean. Soc. Ind. Appl. Math. 15 (2011), no. 4, 319-328. - D. Li and M. Xue, Bases and Frames on Banach Spaces, Science Press, Beijing, 2007.
- A. Najati, M. H. Faroughi, and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology 14 (2008), no. 3, 271-286.
- W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039
- W. Sun, Stability of g-frame, J. Math. Anal. Appl. 326 (2007), no. 2, 858-868. https://doi.org/10.1016/j.jmaa.2006.03.043
- A. E. Talor and D. C. Lay, An Introduction to Functional Analysis, Wiley, New York, 1980.
- X. Xiao, Y. Zhu, and L. Gavruta, Some properties of K-frames in Hilbert spaces, Results Math. 63 (2013), no. 3-4, 1243-1255. https://doi.org/10.1007/s00025-012-0266-6
- Z. Yan and L. Yunzhang, Characterization of rational time-frequency multi-window Cabor frames and their duals, J. Korean Math. Soc. 51 (2014), no. 5, 897-918. https://doi.org/10.4134/JKMS.2014.51.5.897
- R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.
- Y. Zhou and Y. Zhu, K-g-frames and dual g-frames for closed subspaces, Acta Math. Sinica (Chin. Ser.) 56 (2013), no. 5, 799-806.
- Y. Zhou and Y. Zhu, Characterizations of K-g-frames in Hilbert Spaces, Acta Math. Sinica (Chin. Ser.) 57 (2014), no. 5, 1031-1040.
Cited by
- New Constructions of K-g-Frames vol.73, pp.4, 2018, https://doi.org/10.1007/s00025-018-0924-4
- -G-frames and their Dual pp.1793-690X, 2019, https://doi.org/10.1142/S0219691319500150
- K-g-frames and their dual pp.1793-690X, 2019, https://doi.org/10.1142/S0219691319500152