DOI QR코드

DOI QR Code

K-G-FRAMES AND STABILITY OF K-G-FRAMES IN HILBERT SPACES

  • Hua, Dingli (School of Mathematics and Information Science Beifang University of Nationalities) ;
  • Huang, Yongdong (School of Mathematics and Information Science Beifang University of Nationalities)
  • Received : 2015.08.19
  • Published : 2016.11.01

Abstract

A K-g-frame is a generalization of a g-frame. It can be used to reconstruct elements from the range of a bounded linear operator K in Hilbert spaces. K-g-frames have a certain advantage compared with g-frames in practical applications. In this paper, the interchangeability of two g-Bessel sequences with respect to a K-g-frame, which is different from a g-frame, is discussed. Several construction methods of K-g-frames are also proposed. Finally, by means of the methods and techniques in frame theory, several results of the stability of K-g-frames are obtained.

Keywords

References

  1. M. S. Asgari and H. Rahimi, Generalized frames for operators in Hilbert Spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17 (2014), no. 2, 1450013, 20 pp.
  2. H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process. 46 (1998), 3256-3268. https://doi.org/10.1109/78.735301
  3. E. J. Candes and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities, Comm. Pure. Appl. Math. 57 (2004), no. 2, 219-266. https://doi.org/10.1002/cpa.10116
  4. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
  5. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283. https://doi.org/10.1063/1.527388
  6. M. Ding, X. Xiao, and Y. Zhu, K-frames in Hilbert Spaces, Acta Math. Sinica (Chin. Ser.) 57 (2014), no. 6, 1089-1100.
  7. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. https://doi.org/10.1090/S0002-9939-1966-0203464-1
  8. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
  9. L. Gavruta, Perturbation of K-frames, Bul. Stiint Univ. Politeh. Timis. Ser. Mat. Fiz. Tom. 56(70) (2011), no. 2, 48-53.
  10. L. Gavruta, New results on frames for operators, Proc. Intern. Conf. Sciences, 2011(Accepted).
  11. L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), no. 1, 139-144. https://doi.org/10.1016/j.acha.2011.07.006
  12. P. G. Gazassa and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543-557. https://doi.org/10.1007/BF02648883
  13. K. K. Hyun, L. D. Gwan, and Y. G. Joon, Generating new frames in $L^2$ (R) by convdutions, J. Korean. Soc. Ind. Appl. Math. 15 (2011), no. 4, 319-328.
  14. D. Li and M. Xue, Bases and Frames on Banach Spaces, Science Press, Beijing, 2007.
  15. A. Najati, M. H. Faroughi, and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology 14 (2008), no. 3, 271-286.
  16. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039
  17. W. Sun, Stability of g-frame, J. Math. Anal. Appl. 326 (2007), no. 2, 858-868. https://doi.org/10.1016/j.jmaa.2006.03.043
  18. A. E. Talor and D. C. Lay, An Introduction to Functional Analysis, Wiley, New York, 1980.
  19. X. Xiao, Y. Zhu, and L. Gavruta, Some properties of K-frames in Hilbert spaces, Results Math. 63 (2013), no. 3-4, 1243-1255. https://doi.org/10.1007/s00025-012-0266-6
  20. Z. Yan and L. Yunzhang, Characterization of rational time-frequency multi-window Cabor frames and their duals, J. Korean Math. Soc. 51 (2014), no. 5, 897-918. https://doi.org/10.4134/JKMS.2014.51.5.897
  21. R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.
  22. Y. Zhou and Y. Zhu, K-g-frames and dual g-frames for closed subspaces, Acta Math. Sinica (Chin. Ser.) 56 (2013), no. 5, 799-806.
  23. Y. Zhou and Y. Zhu, Characterizations of K-g-frames in Hilbert Spaces, Acta Math. Sinica (Chin. Ser.) 57 (2014), no. 5, 1031-1040.

Cited by

  1. New Constructions of K-g-Frames vol.73, pp.4, 2018, https://doi.org/10.1007/s00025-018-0924-4
  2. -G-frames and their Dual pp.1793-690X, 2019, https://doi.org/10.1142/S0219691319500150
  3. K-g-frames and their dual pp.1793-690X, 2019, https://doi.org/10.1142/S0219691319500152