Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- J. M. Barbosa, M. Dajczer, and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), no. 4, 531-547. https://doi.org/10.1512/iumj.1984.33.33028
- B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Second edition, World Scientific, Hackensack, NJ, 2015.
- B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
- B.-Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), no. 3, 447-453. https://doi.org/10.1017/S0004972700028616
- B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
- M. Choi, D.-S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210. https://doi.org/10.4064/cm129-2-4
- M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.
- M. Choi, Y. H. Kim, and D. W. Yoon, Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 14 (2010), no. 4, 1297-1308. https://doi.org/10.11650/twjm/1500405946
- F. Dillen, Ruled submanifolds of finite type, Proc. Amer. Math. Soc. 114 (1992), no. 3, 795-798. https://doi.org/10.1090/S0002-9939-1992-1072333-5
- D.-S. Kim, Ruled surfaces of finite type in Lorentz space-times, Honam Math. J. 31 (2009), no. 2, 177-183. https://doi.org/10.5831/HMJ.2009.31.2.177
- D.-S. Kim, Ruled submanifolds of finite type in Lorentz space-times, Honam Math. J. 32 (2010), no. 2, 261-269. https://doi.org/10.5831/HMJ.2010.32.2.261
- D.-S. Kim and Y. H. Kim, Finite type ruled hypersurfaces in Lorentz-Minkowski space, Honam Math. J. 30 (2008), no. 4, 743-748. https://doi.org/10.5831/HMJ.2008.30.4.743
- D.-S. Kim and Y. H. Kim, Some classification results on finite type ruled submanifolds in a Lorentz-Minkowski space, Taiwanese J. Math. 16 (2012), no. 4, 1475-1488. https://doi.org/10.11650/twjm/1500406744
-
D.-S. Kim and Y. H. Kim, Minimal ruled submanifolds in Minkowski space
$\mathbb{L}^m$ , J. Geom. Phys. 62 (2012), no. 9, 1893-1902. https://doi.org/10.1016/j.geomphys.2012.04.003 - D.-S. Kim, Y. H. Kim, and S. M. Jung, Ruled submanifolds with Harmonic Gauss map, Taiwanese J. Math. 18 (2014), no. 1, 53-76. https://doi.org/10.11650/tjm.18.2014.3226
- D.-S. Kim, Y. H. Kim, and S. M. Jung, Some classifications of ruled submanifolds in Minkowski space and their Gauss map, Taiwanese J. Math. 18 (2014), no. 4, 10221-1040.
- D.-S. Kim, Y. H. Kim, and D. W. Yoon, Extended B-scrolls and their Gauss maps, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1031-1040.
- D.-S. Kim, Y. H. Kim, and D. W. Yoon, Characterization of generalized B-scrolls and cylinders over finite type curves, Indian J. Pure Appl. Math. 33 (2003), no. 11, 1523-1532.
- D.-S. Kim, Y. H. Kim, and D. W. Yoon, Finite type ruled surfaces in Lorentz-Minkowski space, Taiwanese J. Math. 11 (2007), no. 1, 1-13. https://doi.org/10.11650/twjm/1500404629
- Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.
- Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss maps, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. https://doi.org/10.1016/S0393-0440(99)00063-7
- Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. https://doi.org/10.1216/rmjm/1181069651
Cited by
- Gauss Map and Its Applications on Ruled Submanifolds in Minkowski Space vol.10, pp.6, 2018, https://doi.org/10.3390/sym10060218