DOI QR코드

DOI QR Code

SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE

  • Received : 2015.08.13
  • Published : 2016.11.01

Abstract

In this paper, we analyze the necessary and sufficient condition introduced in [5]: that a functional F in $L^2(C_{a,b}[0,T])$ has an integral transform ${\mathcal{F}}_{{\gamma},{\beta}}F$, also belonging to $L^2(C_{a,b}[0,T])$. We then establish the inverse integral transforms of the functionals in $L^2(C_{a,b}[0,T])$ and then examine various properties with respect to the inverse integral transforms via the translation theorem. Several possible outcomes are presented as remarks. Our approach is a new method to solve some difficulties with respect to the inverse integral transform.

Keywords

Acknowledgement

Supported by : Dankook University

References

  1. R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488. https://doi.org/10.1215/S0012-7094-45-01243-9
  2. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507. https://doi.org/10.1215/S0012-7094-45-01244-0
  3. R. H. Cameron and D. A. Storvick, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space C, Duke Math. J. 14 (1947), 99-107. https://doi.org/10.1215/S0012-7094-47-01409-9
  4. K. S. Chang, B. S. Kim, and I. Yoo, Integral transforms and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 97-105. https://doi.org/10.1080/01630560008816942
  5. S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in $L^2(C_a,\;_b[0, T])$, J. Fourier Anal. Appl. 15 (2009), no. 4, 441-462. https://doi.org/10.1007/s00041-009-9076-y
  6. S. J. Chang, H. S. Chung, and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals in $L_2(C_0[0, T])$, Integral Transforms Spec. Funct. 21 (2010), no. 1-2, 143-151. https://doi.org/10.1080/10652460903063382
  7. S. J. Chang, H. S. Chung, and D. Skoug, Some basic relationships among transforms, convolution products, first varia-tions and inverse transforms, Cent. Eur. J. Math. 11 (2013), no. 3, 538-551.
  8. H. S. Chung, J. G. Choi, and S. J. Chang, A Fubini theorem on a function space and its applications, Banach J. Math. Anal. 7 (2013), no. 1, 173-185. https://doi.org/10.15352/bjma/1358864557
  9. H. S. Chung, D. Skoug, and S. J. Chang, A Fubini theorem for integral transforms and convolution products, Internat. J. Math. 24 (2013), no. 3, Article ID 1350024, 13 pages.
  10. H. S. Chung, D. Skoug, and S. J. Chang, Relationships involving transforms and convolutions via the translation theorem, Stoch. Anal. Appl. 32 (2014), no. 2, 348-363. https://doi.org/10.1080/07362994.2013.877350
  11. M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), no. 2, 291-302. https://doi.org/10.4134/BKMS.2011.48.2.291
  12. U. C. Ji and N. Obata, Quantum white noise calculus, Non-commutativity, infinite-dimensionality and probability at the crossroads, 143-191, QP-PQ: Quantum Probab. White Noise Anal. 16, World Sci.Publ., River Edge, NJ, 2002.
  13. B. J. Kim, B. S. Kim, and D. Skoug, Integral transforms, convolution products and first variations, Int. J. Math. Math. Sci. 2004 (2004), no. 9-12, 579-598. https://doi.org/10.1155/S0161171204305260
  14. B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0, T])$, Rocky Mountain J. Math. 33 (2003), no. 4, 1379-1393. https://doi.org/10.1216/rmjm/1181075469
  15. Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
  16. Y. J. Lee, Unitary operators on the space of $L^2$-functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), no. 2, 165-174.
  17. E. Nelson, Dynamical Theories of Brownian Motion, 2nd edition, Math. Notes, Princeton University Press, Princeton, 1967.
  18. L. A. Shepp, Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist. 37 (1966), 321-354. https://doi.org/10.1214/aoms/1177699516
  19. D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147-1175. https://doi.org/10.1216/rmjm/1181069848
  20. J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15, (1971), 37-46.
  21. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.

Cited by

  1. New expressions of the modified generalized integral transform via the translation theorem with applications vol.29, pp.2, 2018, https://doi.org/10.1080/10652469.2017.1414214