DOI QR코드

DOI QR Code

Comparative Study on Biomechanical Behavior of Various Cervical Stand-Alone Cage Designs

경추용 일체형 추간체 유합 보형재의 디자인 변화에 따른 생체역학적 효과 비교 연구

  • Park, Kwang Min (Medical Device Development Center, Osong Medical Innovation Foundation) ;
  • Jung, Tae Gon (Medical Device Development Center, Osong Medical Innovation Foundation) ;
  • Jeong, Seung Jo (R&D Center, GS Medical Co., Ltd.) ;
  • Lee, Sung Jae (Department of Biomedical Engineering, Inje University)
  • 박광민 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 정태곤 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 정승조 ((주)지에스메디칼 기업부설연구소) ;
  • 이성재 (인제대학교 의용공학부)
  • Received : 2016.05.10
  • Accepted : 2016.09.06
  • Published : 2016.11.01

Abstract

The purpose of this study was to evaluate and compare by finite element analysis the biomechanical performance, in terms of cervical stand-alone cage screw insert angle (Type 3 - 5: 2 Screws) and screw arrangement (Type 6 and 7: 3 Screws / Type 8 and 9: 4 Screws), and the range of motion (ROM) of traditional anterior cervical discectomy of a fusion device (Type 1: Cage / Type 2: Cage + ACP). Our study suggests that the biomechanical behavior of a postoperative cervical spine could indeed be influenced by design features, such as screw angle and number of screws. In particular, ROM and the risk of subsidence were more sensitive during extension about type 5 (Insert Angle $20^{\circ}$). Our study also suggested that the number of screw asymmetries between up and down for type 6 and 7 could result in differences in the risk of screw fracture manifesting in different clinical aspects.

Keywords

References

  1. Majid, K., Chinthakunta, S., Muzumdar, A., and Khalil, S., “A Comparative Biomechanical Study of a Novel Integrated Plate Spacer for Stabilization of Cervical Spine: An in Vitro Human Cadaveric Model,” Clinical Biomechanics, Vol. 27, No. 6, pp. 532-536, 2012. https://doi.org/10.1016/j.clinbiomech.2011.12.013
  2. Fujibayashi, S., Neo, M., and Nakamura, T., “Stand-Alone Interbody Cage Versus Anterior Cervical Plate for Treatment of Cervical Disc Herniation: Sequential Changes in Cage Subsidence,” Journal of Clinical Neuroscience, Vol. 15, No. 9, pp. 1017-1022, 2008. https://doi.org/10.1016/j.jocn.2007.05.011
  3. Rapoff, A. J., Conrad, B. P., Johnson, W. M., Cordista, A., and Rechtine, G. R., “Load Sharing in Premier and Zephir Anterior Cervical Plates,” Spine, Vol. 28, No. 24, pp. 2648-2650, 2003. https://doi.org/10.1097/01.BRS.0000099387.37393.3F
  4. Wigfield, C., Gill, S., Nelson, R., Langdon, I., Metcalf, N., et al,m "Influence of an Artificial Cervical Joint Compared with Fusion on Adjacent-Level Motion in the Treatment of Degenerative Cervical Disc Disease," Journal of Neurosurgery: Spine, Vol. 96, No. 1, pp. 17-21, 2002. https://doi.org/10.3171/spi.2002.96.1.0017
  5. Scholz, M., Reyes, P. M., Schleicher, P., Sawa, A. G., Baek, S., et al., “A New Stand-Alone Cervical Anterior Interbody Fusion Device: Biomechanical Comparison with Established Anterior Cervical Fixation Devices,” Spine, Vol. 34, No. 2, pp. 156-160, 2009. https://doi.org/10.1097/BRS.0b013e31818ff9c4
  6. Healy, A. T., Sundar, S. J., Cardenas, R. J., Mageswaran, P., Benzel, E. C., et al., “Zero-Profile Hybrid Fusion Construct Versus 2-Level Plate Fixation to Treat Adjacent-Level Disease in the Cervical Spine: Laboratory Investigation,” Journal of Neurosurgery: Spine, Vol. 21, No. 5, pp. 753-760, 2014. https://doi.org/10.3171/2014.7.SPINE131059
  7. Beutler, W. J., Clavenna, A. L., Gudipally, M., Moldavsky, M., and Khalil, S., “A Biomechanical Evaluation of a Spacer with Integrated Plate for Treating Adjacent-Level Disease in the Subaxial Cervical Spine,” The Spine Journal, Vol. 12, No. 7, pp. 585-589, 2012. https://doi.org/10.1016/j.spinee.2012.07.002
  8. Galbusera, F., Bellini, C. M., Raimondi, M. T., Fornari, M., and Assietti, R., “Cervical Spine Biomechanics Following Implantation of a Disc Prosthesis,” Medical Engineering & Physics, Vol. 30, No. 9, pp. 1127-1133, 2008. https://doi.org/10.1016/j.medengphy.2008.02.002
  9. Jung, T.-G., Woo, S.-H., Park, K.-M., Jang, J.-W., Han, D.-W., et al., “Biomechanical Behavior of Two Different Cervical Total Disc Replacement Designs in Relation of Concavity of Articular Surfaces: ProDisc-C(R) vs. Prestige-LP(R),” Int. J. Precis. Eng. Manuf., Vol. 14, No. 5, pp. 819-824, 2013. https://doi.org/10.1007/s12541-013-0107-x
  10. Faizan, A., Goel, V. K., Garfin, S. R., Bono, C. M., Serhan, H., et al., “Do Design Variations in the Artificial Disc Influence Cervical Spine Biomechanics? A Finite Element Investigation,” European Spine Journal, Vol. 21, No. 5, pp. 653-662, 2012. https://doi.org/10.1007/s00586-009-1211-6
  11. Zhang, Q. H., Teo, E. C., Ng, H. W., and Lee, V. S., “Finite Element Analysis of Moment-Rotation Relationships for Human Cervical Spine,” Journal of Biomechanics, Vol. 39, No. 1, pp. 189-193, 2006. https://doi.org/10.1016/j.jbiomech.2004.10.029
  12. Ha, S. K., “Finite Element Modeling of Multi-Level Cervical Spinal Segments (C3-C6) and Biomechanical Analysis of an Elastomer-Type Prosthetic Disc,” Medical Engineering & Physics, Vol. 28, No. 6, pp. 534-541, 2006. https://doi.org/10.1016/j.medengphy.2005.09.006
  13. Kim, J.-D., Kim, N.-S., Hong, C.-S., and Oh, C.-Y., “Design Optimization of a Xenogeneic Bone Plate and Screws Using the Taguchi and Finite Element Methods,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 6, pp. 1119-1124, 2011. https://doi.org/10.1007/s12541-011-0149-x
  14. Schleicher, P., Gerlach, R., Schär, B., Cain, C., Achatz, W., et al., “Biomechanical Comparison of Two Different Concepts for Stand Alone Anterior Lumbar Interbody Fusion,” European Spine Journal, Vol. 17, No. 12, pp. 1757-1765, 2008. https://doi.org/10.1007/s00586-008-0797-4
  15. Stadelmann, V. A., Potapova, I., Camenisch, K., Nehrbass, D., Richards, R. G., et al., "In Vivo Microct Monitoring of Osteomyelitis in a Rat Model," BioMed Research International, Vol. 2015, 2015.
  16. Cho, D.-Y., Liau, W.-R., Lee, W.-Y., Liu, J.-T., Chiu, C.-L., et al., “Preliminary Experience Using a Polyetheretherketone (Peek) Cage in the Treatment of Cervical Disc Disease,” Neurosurgery, Vol. 51, No. 6, pp. 1343-1350, 2002. https://doi.org/10.1227/01.NEU.0000309109.71345.19
  17. Panjabi, M. M., Crisco, J. J., Vasavada, A., Oda, T., Cholewicki, J., et al., “Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves,” Spine, Vol. 26, No. 24, pp. 2692-2700, 2001. https://doi.org/10.1097/00007632-200112150-00012
  18. Panjabi, M. M., “Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects,” Clinical Biomechanics, Vol. 22, No. 3, pp. 257-265, 2007. https://doi.org/10.1016/j.clinbiomech.2006.08.006

Cited by

  1. Optimizing total hip replacement prosthesis design parameter for mechanical structural safety and mobility vol.19, pp.1, 2018, https://doi.org/10.1007/s12541-018-0014-2