DOI QR코드

DOI QR Code

Preparation of activated carbon incorporated polysulfone membranes for dye separation

  • Ingole, Pravin G. (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Sawant, Sandesh Y. (School of Chemical Engineering, Yeungnam University) ;
  • Ingole, Neha P. (Department of Biology, Chungnam National University) ;
  • Pawar, Radheshyam R. (Department of Energy and Environment Convergence Technology, Catholic Kwandong University) ;
  • Bajaj, Hari C. (CSIR-Central Salt & Marine Chemicals Research Institute) ;
  • Singh, Kripal (CSIR-Central Salt & Marine Chemicals Research Institute) ;
  • Cho, Moo Hwan (School of Chemical Engineering, Yeungnam University) ;
  • Lee, Hyung Keun (Climate Change Research Division, Korea Institute of Energy Research)
  • 투고 : 2016.04.05
  • 심사 : 2016.07.22
  • 발행 : 2016.11.25

초록

Immediate use of activated carbon incorporated polysulfone membrane application for dye separation was reported in this work. Dimethylformamide (DMF) was used as the solvent for the membrane preparation. The membrane thus prepared were characterized in terms of surface morphology, ATR-FTIR, AFM, experimental results as membrane performance. The resultant nanofiltration (NF) membranes were tested with Congo red dye concentration 200 mg/L. The water permeability was found to be considerably higher than that reported in literature. Experimental results show that the real rejection of the Congo red is 99.57% over the transmembrane pressure 100 psi using 30% activated carbon incorporated membrane. Prepared NF membranes shows the corresponding permeates fluxes were $40Lm^{-2}h^{-1}$ to $82Lm^{-2}h^{-1}$ with different activated carbon percentage incorporated in polysulfone membrane. The present study demonstrated that dye rejection enhanced NF may be a feasible method for the dye wastewater treatment. The overall observations thus indicated that toxic residual dyes can be appreciably separated from the membrane technology, provided that the accompanying polymeric membrane, activated carbon as binding agents and the process parameter levels are astutely selected.

키워드

참고문헌

  1. Ahmed, M.J. (2016), "Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review", J. Environ. Chem. Eng., 4(1), 89-99. https://doi.org/10.1016/j.jece.2015.10.027
  2. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R. and Rafatullah, M. (2015), "Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater", RSC Adv., 5(39), 30801-30818. https://doi.org/10.1039/C4RA16959J
  3. Amini, M., Arami, M., Mahmoodi, N.M. and Akbari, A. (2011), "Dye removal from colored textile wastewater using acrylic grafted nanomembrane", Desalination, 267(1), 107-113. https://doi.org/10.1016/j.desal.2010.09.014
  4. Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pa, A., Alcaina-Miranda, M.I. and Dhahbi, M. (2012), "Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes", Desalination, 297, 87-96. https://doi.org/10.1016/j.desal.2012.04.022
  5. Banat, F. and Al-Bastaki, N. (2004), "Treating dye wastewater by an integrated process of adsorption using activated carbon and ultrafiltration", Desalination, 170(1), 69-75. https://doi.org/10.1016/j.desal.2004.02.093
  6. Bhatt, D.R., Maheria, K.C. and Parikh, J. (2015), "Enhanced separation of toxic Blue BG dye by cloud point extraction with IL as an additive: Effect of parameters, solubilization isotherm and evaluation of thermodynamics and design parameters", J. Environ. Chem. Eng., 3(2), 1365-1371. https://doi.org/10.1016/j.jece.2014.11.031
  7. Blatt, W.F. and David, A. (1970), Membrane Science & Technology, (J.E. Flynn Ed.), New York, NY, USA, pp. 47-97.
  8. Choi, W., Bae, H., Ingole, P.G., Lee, H.K., Kwak, S.J., Jeong, N.J., Park, S.C., Kim, J.H., Lee, J. and Park, C.H. (2015), "Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production", Membr. Water Treat., Int. J., 6(2), 113-126. https://doi.org/10.12989/mwt.2015.6.2.113
  9. Demirbas, A. (2009), "Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review", J. Hazard. Mater., 167(1-3), 1-9. https://doi.org/10.1016/j.jhazmat.2008.12.114
  10. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. and Sanchez-Polo, M. (2007), "Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review", J. Environ. Managem., 85(4), 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
  11. El Qada, E.N., Allen, S.J. and Walker, G.M. (2007), "Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal", Ind. Eng. Chem. Res., 46(14), 4764-4771. https://doi.org/10.1021/ie0701165
  12. Esfandiari, A., Kaghazchi, T. and Soleimani, M. (2012), "Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes", J. Taiwan Inst. Chem. Eng., 43(4), 631-637. https://doi.org/10.1016/j.jtice.2012.02.002
  13. Georgin, J., Dotto, G.L., Mazutti, M.A. and Foletto, E.L. (2016), "Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions", J. Environ. Chem. Eng., 4(1), 266-275. https://doi.org/10.1016/j.jece.2015.11.018
  14. Hagmeyer, G. and Gimbel, R. (1999), "Modelling the rejection of nanofiltration membranes using zeta potential measurements", Sep. Purif. Technol., 15(1), 19-30. https://doi.org/10.1016/S1383-5866(98)00050-1
  15. Han, M.J. and Nam, S.T. (2002), "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202(1-2), 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9
  16. Heibati, B., Rodriguez-Couto, S., Amrane, A., Rafatullah, M., Hawari, A. and Al-Ghouti, M.A. (2014), "Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms", J. Ind. Eng. Chem., 20(5), 2939-2947. https://doi.org/10.1016/j.jiec.2013.10.063
  17. Higuchi, A., Hara, M., Horiuchi, T. and Nakagawa, T. (1994), "Optical resolution of amino acids by ultrafiltration membranes containing serum albumin", J. Membr. Sci., 93(2), 157-164. https://doi.org/10.1016/0376-7388(94)80004-9
  18. Huang, J. and Zhang, K. (2011), "The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination", Desalination, 282, 19-26. https://doi.org/10.1016/j.desal.2011.09.045
  19. Ingole, P.G. and Ingole, N.P. (2014), "Methods for separation of organic and pharmaceutical compounds by different polymer materials", Korean J. Chem. Eng., 31(12), 2109-2123. https://doi.org/10.1007/s11814-014-0284-z
  20. Ingole, P.G., Bajaj, H.C. and Singh, K. (2012), "Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane", Desalination, 305, 54-63. https://doi.org/10.1016/j.desal.2012.08.015
  21. Ingole, P.G., Bajaj, H.C. and Singh, K. (2013a), "Preparation and performance evaluation of enantioselective polymer composite materials", RSC Advances, 3(11), 3667-3676. https://doi.org/10.1039/c2ra21787b
  22. Ingole, P.G., Bajaj, H.C. and Singh, K. (2013b), "Synthesis of solid enantioselective macromer of trimesic acid for the enantiomeric separation of chiral alcohols", Adv. Mater. Res., 2(1), 51-64. https://doi.org/10.12989/amr.2013.2.1.051
  23. Ingole, P.G., Bajaj, H.C. and Singh, K. (2014a), "Membrane separation processes: Optical resolution of lysine and asparagine amino acids", Desalination, 343, 75-81. https://doi.org/10.1016/j.desal.2013.10.009
  24. Ingole, P.G., Choi, W., Kim, K.H., Park, C.H., Choi, W.K. and Lee, H.K. (2014b), "Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation", Chem. Eng. J., 243, 137-146. https://doi.org/10.1016/j.cej.2013.12.094
  25. Jain, R. and Sikarwar, S. (2008), "Removal of hazardous dye Congo red from waste material", J. Hazard. Mater., 152(3), 942-948. https://doi.org/10.1016/j.jhazmat.2007.07.070
  26. Johns, M.M., Marshall, W.E. and Toles, C.A. (1999), "The effect of activation method on the properties of pecan shell-activated carbons", J. Chem. Technol. Biotechnol., 74(11), 1037-1044. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1037::AID-JCTB160>3.0.CO;2-O
  27. Kim, J.H. and Lee, K.H. (1998), "Effect of PEG additive on membrane formation by phase inversion", J. Membr. Sci., 138(2), 153-163. https://doi.org/10.1016/S0376-7388(97)00224-X
  28. Kondru, A.K., Kumar, P. and Chand, S. (2009), "Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst", J. Hazard. Mater., 166(1), 342-347. https://doi.org/10.1016/j.jhazmat.2008.11.042
  29. Lee, J.W., Choi, S.P., Thiruvenkatachari, R., Shim, W.G. and Moon, H. (2006), "Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes", Dyes Pigm., 69(3), 196-203. https://doi.org/10.1016/j.dyepig.2005.03.008
  30. Li, J., Vergne, M.J., Mowles, E.D., Zhong, W.H., Hercules, D.M. and Lukehart, C.M. (2005), "Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs)", Carbon., 43(14), 2883-2893. https://doi.org/10.1016/j.carbon.2005.06.003
  31. Liu, Y., Koops, G.H. and Strathmann, H. (2003), "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the solution and bore liquid solution", J. Membr. Sci., 223(1-2), 187-199. https://doi.org/10.1016/S0376-7388(03)00322-3
  32. Malik, R., Ramteke, D.S. and Wate, S.R. (2007), "Adsorption of malachite green on groundnut shell waste based powdered activated carbon", Waste Manage., 27(9), 1129-1138. https://doi.org/10.1016/j.wasman.2006.06.009
  33. Maurya, S.K., Parashuram, K., Singh, P.S., Ray, P. and Reddy, A.V.R. (2012), "Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aqueous dye solutions", Desalination, 304, 11-19. https://doi.org/10.1016/j.desal.2012.07.045
  34. Mohan, D., Singh, K.P., Singh, G. and Kumar, K. (2002), "Removal of dyes from wastewater using fly ash, a low-cost adsorbent", Ind. Eng. Chem. Res., 41(15), 3688-3695. https://doi.org/10.1021/ie010667+
  35. Mui, E.L.K., Cheung, W.H., Valix, M. and McKay, G. (2010), "Mesoporous activated carbon from waste tyre rubber for dye removal from effluents", Micro. Meso. Mater., 130(1-3), 287-294. https://doi.org/10.1016/j.micromeso.2009.11.022
  36. Mulder, M. (1997), Basic Principles of Membrane Technology, Kluwer Academic Publishers, pp. 123-129.
  37. Panda, S.R. and De, S. (2013), "Role of polyethylene glycol with different solvents for tailor-made polysulfone membranes", J. Polym. Res., 20(7), 179-195. https://doi.org/10.1007/s10965-013-0179-4
  38. Pandit, P. and Basu, S. (2004), "Dye and solvent recovery in solvent extraction using reverse micelles for the removal of ionic dyes", Ind. Eng. Chem. Res., 43(24), 7861-7864. https://doi.org/10.1021/ie0402160
  39. Purkait, M.K., Maiti, A., DasGupta, S. and De, S. (2007), "Removal of Congo red using activated carbon and its regeneration", J. Hazard. Mater. 145(1-2), 287-295. https://doi.org/10.1016/j.jhazmat.2006.11.021
  40. Rafatullah, M., Ahmad, T., Ghazali, A., Sulaiman, O., Danish, M. and Hashim, R. (2013), "Oil Palm Biomass as a Precursor of Activated Carbons: A Review", Critical Rev. Environ. Sci. Technol., 43(11), 1117-1161. https://doi.org/10.1080/10934529.2011.627039
  41. Rambabu, N., Azargohar, R., Dalai, A.K. and Adjaye, J. (2013), "Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications", Fuel Process. Technol., 106, 501-510. https://doi.org/10.1016/j.fuproc.2012.09.019
  42. Reinholdt, M.X., Kaliaguine, S. and Che, R. (2011), "Silicalite-1/SPEEK composite membranes: influence of the zeolite particles loading or size on proton conductivity and water uptake", New J. Chem., 35(11), 2573-2583. https://doi.org/10.1039/c1nj20020h
  43. Rivera-Utrilla, J., Sanchez-Polo, M., Gomez-Serrano, V., Alvarez, P.M., Alvim-Ferraz, M.C.M. and Dias, J.M. (2011), "Activated carbon modifications to enhance its water treatment applications. An overview", J. Hazard. Mater., 187(1-3), 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033
  44. Sawant, S.Y., Somani, R.S., Panda, A.B. and Bajaj, H.C. (2013a), "Formation and characterization of onions shaped carbon soot from plastic wastes", Mat. Let., 94, 132-135. https://doi.org/10.1016/j.matlet.2012.12.035
  45. Sawant, S.Y., Somani, R.S., Panda, A.B. and Bajaj, H.C. (2013b), "Utilization of plastic wastes for synthesis of carbon microspheres and their use as a template for nanocrystalline copper(ii) oxide hollow spheres", ACS Sustainable Chem. Eng., 1(11), 1390-1397. https://doi.org/10.1021/sc400119b
  46. Sawant, S.Y., Somani, R.S., Sharma, S.S. and Bajaj, H.C. (2014), "Solid-state dechlorination pathway for the synthesis of few layered functionalized carbon nanosheets and their greenhouse gas adsorptivity over CO and $N_2$", Carbon, 68, 210-220. https://doi.org/10.1016/j.carbon.2013.10.081
  47. Sawant, S.Y., Somani, R.S., Cho, M.H. and Bajaj, H.C. (2015), "A low temperature bottom-up approach for the synthesis of few layered graphene nanosheets via C-C bond formation using a modified Ullmann reaction", RSC Adv., 5(58), 46589-46597. https://doi.org/10.1039/C5RA07196H
  48. Sharma, N. and Purkait, M.K. (2016), "Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane", Membr. Water Treat., Int. J., 7(3), 257-275. https://doi.org/10.12989/mwt.2016.7.3.257
  49. Shao, M.W., Wang, D.B., Yu, G.H., Hu, B., Yu, W.C. and Qian, Y.T. (2004), "The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation", Carbon, 42(1), 183-185. https://doi.org/10.1016/j.carbon.2003.10.010
  50. Tomaszewska, M. and Mozia, S. (2002), "Removal of organic matter from water by PAC/UF system", Water Res., 36(16), 4137-4143. https://doi.org/10.1016/S0043-1354(02)00122-7
  51. Tuinstra, F. and Koenig, J.L. (1970), "Raman spectrum of graphite", J. Chem. Phys., 53, 1126-1130. https://doi.org/10.1063/1.1674108
  52. Vito, L. and Punzi, V.L. (1990), "A comparison of solute rejection models in RO membrane", Ind. Eng. Chem. Res., 29, 259-263. https://doi.org/10.1021/ie00098a016
  53. Xu, Y. and Lebrun, R.E. (1999), "Comparison of nanofiltration properties of two membranes using electrolyte and non-electrolyte solutes", Desalination, 122(1), 95-106. https://doi.org/10.1016/S0011-9164(99)00031-4
  54. Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44(10), 3812-3818. https://doi.org/10.1021/es1002555
  55. Yu, S., Chen, Z., Cheng, Q., Lu, Z., Liu, M. and Gao, C. (2012), "Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions", Sep. Purif. Technol., 88, 121-129. https://doi.org/10.1016/j.seppur.2011.12.024
  56. Yue, Z.R., Mangun, C.L. and Economy, J. (2004), "Characterization of surface chemistry and pore structure of H3PO4-activated poly(vinyl alcohol) coated fiberglass", Carbon., 42(10), 1973-1982. https://doi.org/10.1016/j.carbon.2004.03.030
  57. Yun, S.H., Ingole, P.G., Choi, W.K., Kim, J.H. and Lee, H.K. (2015), "Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation", J. Mat. Chem. A, 3(15), 7888-7899 https://doi.org/10.1039/C5TA00706B
  58. Zheng, L.L., Su, Y.L., Wang, L.J. and Jiang, Z.Y. (2009), "Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique", Sep. Purif. Technol., 68(2), 244-249. https://doi.org/10.1016/j.seppur.2009.05.010
  59. Zhong, P.S., Widjojo, N., Chung, T.S., Weber, M. and Maletzko, C. (2012), "Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater", J. Membr. Sci., 417-418, 52-60. https://doi.org/10.1016/j.memsci.2012.06.013

피인용 문헌

  1. Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation vol.8, pp.6, 2016, https://doi.org/10.12989/mwt.2017.8.6.591
  2. Adsorption of microcystin onto activated carbon: A review vol.10, pp.6, 2019, https://doi.org/10.12989/mwt.2019.10.6.405
  3. Enhancement of hydrophilicity and anti-fouling property of polysulfone membrane using amphiphilic nanocellulose as hydrophilic modifier vol.10, pp.6, 2016, https://doi.org/10.12989/mwt.2019.10.6.461
  4. Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.131
  5. Anti-Foulant Ultrafiltration Polymer Composite Membranes Incorporated with Composite Activated Carbon/Chitosan and Activated Carbon/Thiolated Chitosan with Enhanced Hydrophilicity vol.11, pp.11, 2016, https://doi.org/10.3390/membranes11110827